W webfleet

PRO X Driver Terminal

Developer documentation

ZRIDGESTONE

Solutions for your journey

Contents

V= [o o 3 4 U 3
[0 1= =Y [Y o 7 4
IR T=Y 0 Yo ST o o ot X 4 o) o 5
2. Webfleet integration via PRO.CONNECt SDK......cccccvceeriiirrrrmmrerersssssssesssessssssssssssssssssnssssees 6
3. Navigation app iNtegratioNn...... s s s s s s s s nmnnn s s s e nn e e e e nn e 7
3.1. Advanced integration via NaVAPP SDK.. ettt 7
311 Features Of the SDKu et ettt st s st be st e b 7

T T2 o o XV o T =1 = | SR 7

3.2. Basic iNtegration Via INTENTS...... ettt et 7
307 P o Tot=) f [N1 =T o) SRR 7

3.2.2. NaVIGation INTENTS. ..o e bbb r e s ae e b sre s 8

3.3. Getting ETA via WEBFLEET.CONNECT ...ttt e 8

B = F=Y o) o o YA o -SSR 9
4.1, HOtS@at CONFIGUIAtION ...ttt sttt beeresbe e 9
4.2. Restrict appliCatioN USATE. ...ttt sttt st sttt e 10
4.3. Enforcing online/allowing offling SELUD ... N
A, LED ettt sttt bbb et b e A b et aeRe s Aebe s te b e bt e st et ebensebeaeebeneetenestere it 12
4.5, SYSTEM PrOPEITIES. ..ottt et st s b e et e s b e ebesbeeatesbeeaeesbeeaeesbesneetas 14
4.6, Controlling POWET DENAVIOUL ..ot ettt ere e 14
4.6.1. Receiving suspend/shutdown INEENTES.......ccciciccce e 14

4.6.2. Actively suspend or shutdown the deViCe......cciic s 15

Ny LU o oYl @Y o 1 o] o [OOSR 17

5. Platform customisation....... it 18
5.1. Delivery Via Webfleet MD M. ...ttt ettt st e 18
5.2, HOtSEat CONFIGUIAtION ...t st re b 18
5.2.1. Control Visibility Of NOtSEALS ... 19

5.3, Settings SNOITCUL QIS ittt st be b b e enes 20
5.3.1. Using setting shortcuts for hotseat configuration......c.ccceeevveiiivccccececeenen, 20

5.4, AUTOMATIC QPP STAITUD ottt bbb e b e sre e b s be s 20
5.1, BERAVIOU .ttt e et et st b e st ettt et e et te b ene st re e enenane 21

LR B 3 =T o1 o (=TT 21

5.5. Hardware bUttON MaPiNg ...ttt sttt st st ere b 21
B.5.10 VI8 Ul ettt sttt bbb s ae s aebe st be s et et et e st e e ebe e ebe s eaenestenn e 21

5.5.2. Via CONfIGUIAtioN fil@. ..ottt et ene 22

5.6. HOMESCreen CONfIGUIATION. ...t be e b s 22
5.6.1. AVAIlale OPTIONS. ...ttt b e sr e ene s 22

5.6.2. EXamMpPle CONFIGUIAtioN. ...ttt st 23

5.7 Restrict appliCAtioN USAGE. ...ttt st st 24

6. Device updates and DACKUP......cccvccerrirrrrrrmerrrrrrrrrssseeee s rr s ssssee e e s ss s amss e e eesssssnnssseseesssnnneseenen 25
B.1. DBVICE FBCOVEIY ..ottt ettt ettt sttt st e s te et e te s be e st e s be e besbeesteebeeseesbesbeesbesbeenbesteensesbeeneesbesaeas 25
6.1.1. Keeping user data during the reCOVErY..... e 25

6.1.2. Resetting custom app reStriCTiONS. ... 25

6.2. Applying customMisations Via MD M.ttt 25
6.3, SNIPPING MO .. ittt ettt et et et e s be st e st et e st eseebesaesbesteseeseeneas 26
6.3.1. ENabling ShipRiNg MO ...ttt st ebe e 27

SR B T XV el Y o = Lot 40 | o TR 27

7. Frequently asked QUESLIONS........cicccveeriiiirrcreere s s seer s s s e sssssns e s e s eesssnnns e e e s snssssnnssesesensasnnenes 28
Copyright NOtiCes....ciiiiiirirrre e s e e s r s 31

Welcome

The PRO X Platform is a solution to help your business move more efficiently. It is a plat-
form to enable you to seamlessly connect your business applications with solutions from
Bridgestone Mobility Solutions. Now, you can easily create your own customised business
applications that harness the power of TomTom'’s award-winning navigation technology
and fleet management features from Bridgestone Mobility Solutions.

The PRO X Developer documentation provides the growing base of developers a wealth of
information and documentation.

Develop

1. Demo application

A PRO X APl demo integration application is available.

The source code can be downloaded from https://webfleet.com/webfleet/partners/inte-
gration/developer-resources/ - Under PRO X Driver Terminals named pro-x-api-demo.zip
- and can then be compiled and installed locally. This is a modern android gradle project.

https://www.webfleet.com/webfleet/partners/integration/developer-resources/
https://www.webfleet.com/webfleet/partners/integration/developer-resources/

2. Webfleet integration via PRO.connect
SDK

This feature is not yet supported. If you are interested in this feature please contact cus-
tomer support.

3. Navigation app integration

3.1. Advanced integration via NavApp SDK

Important: TomTom GO Fleet APIs will only be accessible when your app is registered
with TomTom GO Fleet. Please contact customer support about the setup. To start the
process we will need a production apk file of your application (i.e. if your app is also dis-
tributed via Google Play, make sure to share the apk with the same signing).

TomTom GO Fleet offers a navigation SDK that allows deep integration. It is a Android/Ja-
va library that can be integrated with your application.

3.1.1. Features of the SDK
The following features are available when using the NavApp SDK:

* Planning a route: Free text search via address description (like in Google Maps) or di-
rectly via coordinates.

* Planning a route with waypoints or tracks (gpx files).
* Changing routing parameters.
* Changing vehicle profile or listening to profile changes done with the app.

* Getting feedback about the current route & routing state (ETA, remaining distance,
events, POls, etc).

* Receiving guidance instructions.
* Seeing installed maps.
* Setting behavior for map updates (WiFi, Mobile, disabled).

3.1.2. How to use it

The SDK has to be kept up to date with the TomTom GO Fleet application version. It will
therefore be shared separately as part of the release communication to registered part-
ners.

The SDK includes full javadoc and an example application.

3.2. Basic integration via intents
General information

TomTom GO Fleet supports platform navigation intent integration. Please take into consid-
eration the following:

* Please take note that Google Maps will be shown in the intent names but this is fully
supported with TomTom GO Fleet.

* The examples here show how to use the Android Debug Bridge (adb) to fire those in-
tents. The same can be achieved programmatically from your application.

3.2.1. Location intents

Reference: Android intents - Search for a location.

https://developers.google.com/maps/documentation/urls/android-intents#search-for-a-location

Display a single location via coordinate

adb shell am start -a android.intent.action.VIEW -d "geo:52.52082,13.40938"

Display a single search result for a search query

PRO X APl demo integration application:

TTGF integration

Send a search string Mavigate to a place

Replacing the coordinates with 0,0 allows you to query for an actual address instead of
coordinates.

adb shell am start -a android.intent.action.VIEW -d "geo:0,0?g=Berlin
+Alexanderplatz+1"

3.2.2. Navigation intents

Reference: Android intents - Launch turn-by-turn navigation

PRO X API demo integration application:

I TGF integration

Send a search string Mavigate to a place

This will directly launch a navigation to the provided address or coordinates.

Note: TomTom GO Fleet does not support ‘avoid’ or ‘traveling mode’ parameters for navi-
gation intents.

adb shell am start -a android.intent.action.VIEW -d "google.naviga-
tion:g=Berlin+Alexanderplatz+1"

3.3. Getting ETA via WEBFLEET.connect

While there is no direct access to TomTom GO Fleet via on-device API, the unit's current
ETA to its destination can also be acquired via WEBFLEET.connect.

For setting up refer to https://www.webfleet.com/static/help/webfleet-connect/en_gb/in-

dex.html#data/introductiontowebfleet.connect.html.

For actually acquiring the ETA, see https://www.webfleet.com/static/help/webfleet-con-
nect/en_gb/index.html#data/showobjectreportextern.html (dest_eta).

https://developers.google.com/maps/documentation/urls/android-intents#launch-turn-by-turn-navigation
https://www.webfleet.com/static/help/webfleet-connect/en_gb/index.html#data/introductiontowebfleet.connect.html
https://www.webfleet.com/static/help/webfleet-connect/en_gb/index.html#data/introductiontowebfleet.connect.html
https://www.webfleet.com/static/help/webfleet-connect/en_gb/index.html#data/showobjectreportextern.html
https://www.webfleet.com/static/help/webfleet-connect/en_gb/index.html#data/showobjectreportextern.html

4. Platform APIs

Important: The following APIs are only available with PRO X firmware SR10g and higher.

The PRO X platform API offers direct control of certain platform behavior.

The latest version can be downloaded here: https://webfleet.com/webfleet/partners/in-
tegration/developer-resources/ - Under PRO X Driver Terminals named PRO-X-API-
v1.06.2.zip.

The java library needs to be added to the resources of your application. E.g., under app/
src/main/libs and then added to app/src/build.gradle.kts:

dependencies {

implementation (files ("src/main/libs/mitac-api-libs-poseidon-1.06.1-re-
lease.aar"))

// Other app dependencies
}

4.1. Hotseat configuration

PRO X APl demo integration application:

Set app hotseats: Customize apps that should be acc e quickly

Set Hotseats via API Set default

Hotseats can be configured for quick access to the most important apps. There are 4 slots
available, the index starts at O:

Hotseat configuration

Note: For more information about package and activity names please see the 7. Frequently
asked guestions section.

https://www.webfleet.com/webfleet/partners/integration/developer-resources/
https://www.webfleet.com/webfleet/partners/integration/developer-resources/

import com.mitac.api.libs.Launcher;

mLauncher = new Launcher (getContext () .getApplicationContext (), new Ser-
viceStatusCallback () {
@Override
public void ready () {
Log.d (TAG, "Launcher service is ready. Setting hotseats.");

mLauncher.addOnHotseat ("com.tomtom.videodockcamera", // package

name
"com.tomtom.videodockcamera.VideoDockCameraActivity", // Main
activity
"External Camera", // Label
3); // Hotseat position
}
@Override

public void stopped() {

}) s

4.2. Restrict application usage

It's possible to setup a blacklist of applications that should not be available on the device.
Blacklisted apps will not be visible in the launcher or apps overview. Blacklisted apps can
include pre-installed applications that are usually shipped with the PRO X Platform by de-
fault.

Blacklist example

Note: For more information about package and activity names please see the 7. Frequently
asked guestions section.

com.google.android.apps.messaging
com.android.music
com.google.android.dialer
com.android.chrome
com.google.android.apps.photos
com.google.android.gm
com.google.android.googlequicksearchbox
com.google.android.apps.maps
com.google.android.apps.tachyon
com.android.vending
com.android.video
com.google.android.apps.docs

This static configuration file needs to be added to your app resources (e.9., app/src/
main/res/raw) and can then be used like described below. A reboot is required for the
changes to take effect.

Setting an app blacklist

// Import the FactoryUtility
import com.mitac.api.libs.FactoryUtility;

// The platform will only recognize the blacklist with this filename.
10

private static final String FILE APPS BLACKLIST = "available apps black-
list.txt";

private FactoryUtility factoryUtility;

// Instantiate the FactoryUtility together with your Application or View

@Override

public View onCreateView (LayoutInflater inflater, ViewGroup container, Bun-

dle savedInstanceState)

{

factoryUtility = new FactoryUtility(getContext () .getApplicationContex-—

t());
factoryUtility.bindService()

// Set the blacklist. The blacklist takes effect only after a device re-
boot.
private void setAppBlacklist () {
removeAppBlackList () ;
Log.d (TAG, "Setting app blacklist file");
// Acquire the blacklist configuration from the provided file
final InputStream inputStream = getResources () .openRawRe-—
source (R.raw.available apps blacklist);
final Scanner scanner = new Scanner (inputStream) .useDelimiter ("\\A");
final String result = scanner.hasNext () ? scanner.next() : "";
factoryUtility.writeReservedTextFile (FILE APPS BLACKLIST, result,
false, false);
Log.d(TAG, "Finished setting app blacklist file. Reboot required.");

// Remove blacklist on demand. Removing the blacklist will make the apps
available again after a reboot.
private void removeAppBlackList () {
Log.d (TAG, "Removing app blacklist file");
if (factoryUtility.reservedFileExists (FILE APPS BLACKLIST)) {
factoryUtility.removeReservedFile (FILE APPS BLACKLIST) ;
Log.d(TAG, "Finished removing app blacklist file. Reboot re-
quired.");
} else {
Log.d(TAG, String.format ("File %s could not be removed as it does
not exist", FILE APPS BLACKLIST)) ;
}
}

If removing the blacklist via APl is not possible (e.g., due to having a broken configuration
or similar), please refer to these steps: 6.1.2. Resetting custom app restrictions

4.3. Enforcing online/allowing offline setup

We offer the possibility to enforce online or allow offline setup of the device.

// Import the FactoryUtility
import com.mitac.api.libs.FactoryUtility;

// The platform will only recognize the offline setup file with this file
name

n

private static final String CONTROL FLAG FILENAME OFFLINE SETUP = "setup-
wizard require network";

private FactoryUtility factoryUtility;

// Instantiate the FactoryUtility together with your Application or View
@Override

public View onCreateView (LayoutInflater inflater, ViewGroup container, Bun-

dle savedInstanceState)
{
factoryUtility = new FactoryUtility(getContext () .getApplicationContex-—

t0));
factoryUtility.bindService()

}
// Enforce online setup on demand. This requires a reboot to take effect
private void enforceOnlineSetup ()
{
Log.d (TAG, "Enforcing online setup"):;
if (!factoryUtility.reservedFileExists (CONTROL FLAG FILENAME OF-
FLINE SETUP))
{
factoryUtility.writeReservedTextFile (CONTROL FLAG FILENAME OF-
FLINE SETUP, "", false, false);
}
else
{
Log.d (TAG, "Control flag file for enforcing online setup already
exists");
}
}
// Enable offline setup on demand. This requires a reboot to take effect
private void allowOfflineSetup ()
{
Log.d(TAG, "Allowing offline setup");
if (factoryUtility.reservedFileExists (CONTROL FLAG FILENAME OF-
FLINE SETUP))
{
factoryUtility.removeReservedFile (CONTROL FLAG FILENAME OF-
FLINE SETUP) ;
}
else
{
Log.d(TAG, "Control flag file to enforce online setup does not ex-
ist");

}

4.4, LED

PRO X API demo integration application:

LED

Blink frequency on {ms)

100

100 Blink frequency off (ms)
O Green

O Red

O Blue

LED Blink on LED Blink off

The device LED behaviour can be customised.

Customising the LED behaviour

// Import the LED API
import com.mitac.api.libs.LED;

private LED led;

// Instantiate the LED API together with your Application or View
@Override

public View onCreateView (LayoutInflater inflater,

dle

savedInstanceState) {
led = new LED (getContext ().getApplicationContext())
led.bindService () ;

private void setLedBlinking() {

sd,

// For more options see the API documentation
final int color = LED.LED ID.ID RED;

// Specify on/off intervals

final int on = 100;

final int off = 200;

Log.d(TAG, String.format ("Set LED blinking on. Color: %s, On: %d, Off:

service ready: %$s", color, on, off, led.isServiceReady())):
// Turn the LED off before setting a different blink status
led.controlLed(color, LED.LED STATUS.STATUS OFF ALL, 0, 0);
// Set the new blink behavior

led.controlLed(color, LED.LED STATUS.STATUS BLINK, on, off);

// Make sure to properly unbind the service to avoid memory leaks
public void onDestroyView() {

super.onDestroyView() ;
led.unbindService () ;

ViewGroup container,

Bun-

Note: Different LED colour controls can be combined at the same time.

4.5. System properties

The API allows reading and writing certain system properties. The current state of the de-
vice can be read out via adb: adb shell getprop.

Interacting with system properties

import com.mitac.api.libs.SystemUtilities;
private SystemUtilities systemUtilities;

// Instantiate the SystemUtilities API together with your Application or
View
@Override
public View onCreateView (LayoutInflater inflater, ViewGroup container, Bun-
dle savedInstanceState) ({

systemUtilities = new SystemUtilities (getContext () .getApplicationCon-
text());

systemUtilities.bindService () ;

// Getting a system properties value
systemUtilities.getSystemProp ("persist.sys.ship.mode.current") ;

// Setting a system property to a certain value
systemUtilities.setSystemProp ("persist.sys.ship.mode.current", "1");

// Make sure to properly unbind the service to avoid memory leaks
public void onDestroyView () {

super.onDestroyView () ;

systemUtilities.unbindService () ;

4.6. Controlling power behaviour

On PRO X devices, third party apps are able to change the default power button behavior.

4.6.1. Receiving suspend/shutdown intents

To intercept power button intents coming from the system, a broadcast receiver

needs to be register dynamically or statically for the com.webfleet.prosystemapp.AC-
TION_REQUEST_CONFIRM_SUSPEND_SHUTDOWN intent action which requires the
com.webfleet.prosystemapp.permission.REQUEST_SUSPEND_SHUTDOWN permission.

An example for statically registered receiver looks as follows in the Android manifest:

<uses-permission android:name="com.webfleet.prosystemapp.permission.RE-
QUEST SUSPEND SHUTDOWN" />

<receiver
android:name="com.example.StaticPowerOffReceiver"
android:exported="true"
android:permission="com.webfleet.prosystemapp.permission.RE-
QUEST SUSPEND SHUTDOWN">
<intent-filter android:priority="10" >
<action android:name="com.webfleet.prosystemapp.ACTION REQUEST CON-
FIRM SUSPEND SHUTDOWN" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</receiver>

t's imported to provide a higher than default (O) priority on the intent filter to receive the
intent.

Note: Once a broadcast receiver has been registered for the com.webfleet.prosystemap-
p.ACTION_REQUEST_CONFIRM_SUSPEND_SHUTDOWN intent action, the default power
button behavior of the PRO X device will not work anymore and you as a third party devel-
oper are responsible for handling it properly.

4.6.2. Actively suspend or shutdown the device

In order to suspend or shutdown the device (reboot is always handled via the power sys-
tem dialog) the implementation of the broadcast receiver could look as follows:

/**
* Broadcast receiver to handle intents for suspend or shutdown.
=y
public class StaticPowerOffReceiver extends BroadcastReceiver ({
private static final String TAG = "StaticPowerOffReceiver";
public enum PowerOffReason {
USER (4) ,
TIMEOUT (2) ,
UNPLUGGED (13),
SYSTEM (Q) ,
UNDEFINED (-1) ;

private final int val;

PowerOffReason (int val) {
this.val = val;

public int getVal() {
return this.val;

public static PowerOffReason fromInt (int wval) {
for (PowerOffReason reason : PowerOffReason.values()) {
if (val == reason.getVal()) {
return reason;

}
return UNDEFINED;

public enum PowerOffState ({
SHUTDOWN (1),

SUSPEND (2) ,
UNDEFINED (-1) ;

private final int val;

PowerOffState (int wval) {
this.val = val;

public int getVal() {
return this.val;

public static PowerOffState fromInt (int wval) {
for (PowerOffState state : PowerOffState.values()) {
if (val == state.getVal()) {
return state;

}
return UNDEFINED;

public static final String ACTION REQUEST CONFIRM SUSPEND SHUTDOWN =
"com.webfleet.prosystemapp.ACTION REQUEST CONFIRM SUSPEND SHUTDOWN";

public static final String REQUEST SUSPEND SHUTDOWN PERMISSION =
"com.webfleet.prosystemapp.permission.REQUEST SUSPEND SHUTDOWN";

public static final String REQUEST SHUTDOWN ACTION = "com.tomtom.p-
nd.navpadsystemapp.ACTION REQUEST SHUTDOWN";

public static final String REQUEST SUSPEND ACTION = "com.tomtom.p-
nd.navpadsystemapp.ACTION REQUEST SUSPEND";

public static final String POWEROFF REASON KEY = "poweroff reason";

private static final String POWEROFF STATE KEY = "poweroff state";

private static final String PRO_SYSTEM APP = "com.tomtom.pnd.navpadsys-—
temapp";

@Override

public void onReceive (final Context context, final Intent intent) {

if (ACTION_REQUEST_CONFIRM_SUSPEND_SHUTDOWN.equals(intent.getAc—
tion())) {
Log.d (TAG, "ACTION_REQUEST_CONFIRM_SUSPEND_SHUTDOWN received on
static receiver");

final Bundle bundle = intent.getExtras();
if (bundle != null) {
// Every intent contains a power off reason and state indi-
cating what the
// source of the intent was and whether suspend or shutdown
should be done.
final int powerOffReasonValue = bundle.getInt (POWEROF-
F REASON KEY, -1);
final PowerOffReason powerOffReason = PowerOffRea-
son.fromInt (powerOffReasonValue) ;
final int powerOffStateValue = bundle.getInt (POWEROFF S-
TATE KEY, -1);
final PowerOffState powerOffState = PowerOffState.fromIn-
t (powerOffStateValue) ;
Log.1(TAG, "Power off reason: " + powerOffReason + " state:
" + powerOffState);

16

switch (powerOffReason) ({
case UNPLUGGED: // Device was unplugged from power
// intended fall-through
case SYSTEM: // System wants suspend or shut down
// intended fall-through
case USER: // User pressed the power button
// For every reason other than TIMEOUT we need de-
termine whether
// the device should be suspended or shut down. We
then send the
// appropriate intent back to the system app han-
dling the actual
// suspend or shutdown.
if (powerOffState == PowerOffState.SUSPEND) ({
final Intent suspendIntent = new Intent (RE-
QUEST SUSPEND_ ACTION) ;
suspendIntent.setPackage (PRO_SYSTEM APP) ;
context.sendBroadcast (suspendIntent) ;
} else if (powerOffState == PowerOffState.SHUTDOWN)

final Intent shutdownIntent = new Intent (RE-
QUEST SHUTDOWN ACTION) ;
shutdownIntent.setPackage (PRO SYSTEM APP) ;
context.sendBroadcast (shutdownIntent) ;
} else {
Log.w (TAG, "Unsupported power off state: " +
powerOffState) ;
}
break;
case TIMEOUT:
// In case of a screen timeout we directly suspend
the device
final Intent suspendIntent = new Intent (RE-
QUEST SUSPEND ACTION) ;
suspendIntent.setPackage (PRO_SYSTEM APP) ;
context.sendBroadcast (suspendIntent) ;
break;
default:
break;

4.7. Further options

So far, we've highlighted certain important aspects of the APl and we invite you to
see which other options the platform APl might be providing for your use case. The
full javadoc for the API is included in the zip file available here: https://webfleet.com/
webfleet/partners/integration/developer-resources/ - Under PRO X Driver Terminals.

https://www.webfleet.com/webfleet/partners/integration/developer-resources/
https://www.webfleet.com/webfleet/partners/integration/developer-resources/

5. Platform customisation

Certain behavior of the platform can be customized to your needs without additional de-
velopment, just by using configuration files.

5.1. Delivery via Webfleet MDM

We suggest using Webfleet MDM as a distribution platform for those changes (see 6.2. Ap-
plying customisations via MDM), but technically any form of delivery of the discussed files
to their respective location can achieve the same results (manual provisioning or 3rd-party
EMMs).

5.2. Hotseat configuration

Hotseats can be configured via a static configuration file hotseat customer.json. Thisis
an example hotseat file.

Hotseats can be configured for quick access to the most important apps. There are 4 slots
available, the index starts at O:

The behaviour is as follows:

* 4 Hotseats can be configured (0-3).

* Important: If the hotseats (or any other configuration done via this file) is updated, the
version tag must be increased. Example: From 1.0 to 2.0.

* The file must be saved to one of the following locations:

o

Root of an external SD card.
Root of internal device storage (/sdcard).
If it exists on both locations, external SD card takes prevalence.

o

o

18

* A reboot is required for the changes to take effect.

* |f the hotseats is reset, a device factory reset is required. Removing the file will not re-
vert it back to the default. Instead the default can be applied via a default config, which
can be found on our developer resources page, the file is named ‘hotseat_customer.j-

s

son'.

Hotseat configuration

Note: For more information about package and activity names please see the 7. Frequently
asked gquestions section.

"customer hotseat version": "1.0",
"hotseat": [

{
"package": "com.webfleet.proapp",
"class": "com.webfleet.proapp.MainActivity",
"x": Q"

b

{
"package": "com.tomtom.gplay.navapp.gofleet",
"class": "com.tomtom.mykonosapp.MykonosAppActivity",
WgWg WiW

b

{
"package": "com.google.android.dialer",
"class": "com.google.android.dialer.extensions.GoogleDialtacts-

Activity",

WgWg W2W

b

{
"package": "com.prox.shortcut.language",
"class": "com.prox.shortcut.MainActivity",
"o "3"

5.2.1. Control visibility of hotseats

In case you wish to use the Kiosk mode provided by your EMM together with your PRO
X, it's advised to disable hotseats completely to prevent users from breaking out of the
kiosk mode. This can be achieved via blocking or allowing the pre-installed application
com.prox.hotseatscontroller via EMM policy

* Blocking the application: hotseats won't be visible.
* Allowing the application: hotseats will be visible.

Note: While by default hotseats are allowed and visible, should you have blocked them
once on a device, you actively need to allow hotseats again via policy (instead of just re-
moving the policy completely). Alternatively, a factory reset device will show the hotseats
again, even without any related policy.

19

https://www.webfleet.com/webfleet/partners/integration/developer-resources/

5.3. Settings shortcut apps

The platform offers 5 shortcut apps into certain settings. They are intended for EMM use
cases where the default Android settings app use could be restricted, while some specific
detailed settings apps might still be enabled. The following shortcut apps are supported:

e com.prox.shortcut.bluetooth
e com.prox.shortcut.display

e com.prox.shortcut.language
e com.prox.shortcut.security

* com.prox.shortcut.wifi

5.3.1. Using setting shortcuts for hotseat configuration

All setting shortcut apps share the same activity class and can therefore be configured like
this:

{

"package": "com.prox.shortcut.bluetooth",
"class": "com.webfleet.proapp.MainActivity",
"X": "O"

5.4. Automatic app startup
It's possible to configure automatic startup of apps and/or services after device boot.

A configuration file looks like follows:

autostart_app_list.json example

Note: For more information about package and activity names please see the 7. Frequently
asked gquestions section.

"auto activity": [
{
"component": "com.webfleet.proapp/com.webfleet.proapp.MainActivi-
ty",
"show time": 10000
}l
{

"component": "com.tomtom.gplay.navapp.gofleet/com.tomtom.mykonos—
app.MykonosAppActivity",
"show time": 1000
}
]l
"auto service": [
"com.example.app/.ExampleService"
]
}

This file called autostart app list.json needs to be moved to the root of the internal
device storage (/sdcard).

20

5.4.1. Behaviour

* One of ‘auto_activity’ or ‘auto_service’ (or both) needs to be present.
* ‘show_time’ controls how long this app will be visible until the next app will be started:

o

If this element is missing, a default of 1000ms will be applied.

This element needs to be tuned in case you want to allow your auto-start apps to
do certain initialisation before being moved to the background again.

o

* The sorting of auto-start is top-to-bottom:

o

The first app will be started immediately after the device booted.

It will be shown for the specified ‘show_time’, after which the next app will be start-
ed.

o

5.4.2. Example

With this example configuration, Work App will be auto-started with enough time to ini-
tialise itself, and afterwards TomTom GO Fleet will be started. This way, drivers just need
to boot the device and can start navigating, while the fleet manager can be sure that Work
App will communicate with Webfleet.

1. Download example file available here: https://webfleet.com/webfleet/partners/integra-
tion/developer-resources/ - Under PRO X Driver Terminals named autostart_app_list.j-
son.

2. Move the provided example to the correct location with adb push autostart ap-
p_list.json /sdcard/.

3. Reboot the device.

5.5. Hardware button mapping

The hardware buttons below the Power button on the right side of the device frame can
be mapped to specific actions.

5.5.1. Via Ul
Go to Android Settings and scroll down to ‘Custom Key Configuration’.

Setting up an app for the hardware buttons is done like this:

21

https://www.webfleet.com/webfleet/partners/integration/developer-resources/
https://www.webfleet.com/webfleet/partners/integration/developer-resources/

5.5.2. Via configuration file

The hotseat customer.json configuration mentioned above can be extended to config-
ure the hardware button mapping. The full package name plus main activity need to be
specified. If the app field is longer than 90 characters, the short cut notation needs to be
used (e.g. com.webfleet.proapp/.MainActivity).

Additional information about the key codes used for the hardware:

* Keycode 114 stands for the top button.
* Keycode 115 stands for the bottom button.

Note: For more information about package and activity names please see the 7. Frequently
asked guestions section.

"customer hotseat version": "2.0",
"hotseat": [

// This is optional for this scenario...
]I
"system properties": [

{

"persist.sys.key.ll4.app": "com.tomtom.gplay.navap-—
p.gofleet/com.tomtom.mykonosapp.MykonosAppActivity",
"persist.sys.key.1l14.keycode": "F1",
"persist.sys.key.1l1l4.remap": "true",
"persist.sys.key.1l15.app": "com.webfleet.proapp/
com.webfleet.proapp.MainActivity",
"persist.sys.key.1l15.keycode": "F2",
"persist.sys.key.1l1l5.remap": "true"

5.6. Homescreen configuration

The hotseat customer.json configuration can also be extended to configure the home
screen layout. After the file is added to the correct location (see above) changes take ef-
fect after a reboot.

5.6.1. Available options
The home screen follows a grid layout of 6 (horizontal) by 5 (vertical) elements.

This example shows screen 1. A section in the top left is highlighted, which is due to
Google certification needs to be occupied by the ‘Google’ app and cannot be changed. On
all other screens it's possible to occupy each grid with a custom element.

22

The following options are available for the add appwidget object:

* package: The app's package name.

* class: The main class name to launch.

* screen: The screen index, optional, default is O.

* x,v: The element’s (starting) position on the grid.

o

Grid coordinates can be seen in the screenshot above. Per page they start on 0,0
and go to 5,4.

* span_x, span_y: Optional, default is 1in both dimensions. Used for widgets stretching
over multiple fields. Not applicable for single app icons.

o

Maximum span size is x=6 and y=5, this element would stretch over the whole grid
of the screen.

5.6.2. Example configuration

The example file can be downloaded from: https://webfleet.com/webfleet/partners/inte-
gration/developer-resources/ - Under PRO X Driver Terminals named hotseat_custometr.j-
son.

"customer hotseat version": "3.0",
"hotseat": [

// This is optional for this scenario...
]I
"system properties": [

// This is optional for this scenario...
]I
"add appwidget": [

{

"package": "com.android.deskclock",
"class": "com.android.alarmclock.DigitalAppWidgetProvider",
"screen": "0",
"x": "Q",
"y": o "2v,
"span x": "3",
"span y": "1"
bo
{
"package": "com.webfleet.proapp",

23

https://www.webfleet.com/webfleet/partners/integration/developer-resources/
https://www.webfleet.com/webfleet/partners/integration/developer-resources/

"class": "com.webfleet.proapp.MainActivity",

"k "2v,
"y" : "1"
by
{
"package": "com.webfleet.proapp",
"class": "com.webfleet.proapp.MainActivity",
"Moo "4n,
"y" : "4"

5.7 Restrict application usage

Complementary to the API described in 4.2. Restrict application usage, app usage restric-
tions can also be achieved via configuration file. Just specify the blacklist as described in
the linked section and put a file available apps blacklist.txt to /sdcard (root of in-
ternal device storage). After a reboot, the restrictions will be applied and the blacklist con-
figuration file will be automatically removed from the devices' /sdcard folder.

Removing restrictions can be done by supplying a new empty blacklist file or as described
in 6.1.2. Resetting custom app restrictions.

24

6. Device updates and backup

6.1. Device recovery
PRO X offers 3 supported ways of updating the device:

* Over the air update via WiFi/Mobile with the Webfleet Updater.
* SD card update with the Webfleet Updater.
* Recovery update via SD card.

The recovery process is intended to resolve issues that cannot otherwise be fixed by a fac-
tory reset.

The recovery zip file can be downloaded via MDM and as such it's part of every down-
loaded SD card.

Certain triggers can be applied during the recovery to influence its behaviour, these can be
found below.

6.1.1. Keeping user data during the recovery

Important: As some problems that lead to a device recovery will be caused by having a
broken state inside the userdata partition, using this flag should be done with caution.

Adding the 2 files below to the /sdupdate folder on the recovery SD card ensures that all
userdata (see https://source.android.com/docs/core/architecture/partitions) is kept (in-
cluding e.g. downloaded TomTom GO Fleet maps or other application data).

* keep_metadata.txt
* keep_userdata.txt

6.1.2. Resetting custom app restrictions

Adding a file called remove app blacklist.txt to the /sdupdate folder will reset the app
blacklist during the recovery process.

6.2. Applying customisations via MDM

All customizations described in this document that can be applied via a configuration file
in /sdcard can be delivered via the Webfleet MDM to all of your devices. Please find the
instructions below.

Important: If you are operating a mixed fleet of PRO devices, the config files not applic-
able for your device will be downloaded and installed by the on-device updater but will
have no impact on the device functionality.

Create your customization config file.

Zip the config file.

Go to MDM — My Content — Add new content.
Select the zip file:

NN

25

https://source.android.com/docs/core/architecture/partitions

rwebfleet ooy cowrent oo CWHLOADS
‘L.h molutiores

[L]
L

UFLOAD NEW CONTENT

@ Fackage details

FILE"
autestart_ssg_list,zis O ME
]
Uplead successfully finished.
Cance: Mext
5. Finish the upload process:
w ml;‘““;_m APPS & COMTENT DEVICES DoOMWHLOADS 1 a

LPLOAD NEW CONTENT

Package details ¥ ﬂ General information

Anp aulestart configuration Tar POO X

VEMSION MAME"

g

CESCRIPTICON"

Work &pp & TamTam GO Fleet guigstart, conhig

Cancs Prasviaus M=t

6. Assign the new content to your account and update your devices.

6.3. Shipping mode

To help preserve battery capacity over longer periods of time, shipping mode can be en-
abled.

When shipping mode is enabled, it will take effect on the next shutdown. The device will
then disconnect the connection to the battery for the whole time it stays powered off.

After booting for the first time after the device had shipping mode enabled, it will again be
disabled.

26

Note: Only when shipping mode is enabled, this element will be visible inside Settings #
Battery.

Battery

Shipning made is enabled

Battany usage

Baitary Saver

6.3.1. Enabling shipping mode

e Can be done via System Properties API, for an example see 4.5. System properties.

persist.sys.ship.mode.current - If set to T, the device will immediately enter
shipping mode on the next shutdown. After the first boot, the value will reset to O.

* Shipping mode is disabled after a manual reboot.
* |If turned on, shipping mode is visible under Settings — Battery.

6.4. Device backup
These settings are covered by the Android device backup functionality:

* Network: Wi-Fi & password, Mobile network / APN setting.

* Display: Keep Screen on when powered, Switch off screen when disconnected from
Power.

e Battery: Protect batteryStart device automatically when connected to Power.
* Sound: Phone ringtone, Default notification sound,Default alarm sound.

e Security & location: Screen lock.

* System: Language.

Backups can be created by connecting the device to the PC and executing this command:
adb backup -system android com.android.providers.settings

Backups can be applied in 2 ways:

1. On the device directly via this command: adb restore backup.ab
2. Via Webfleet MDM:

o

Create backup.ab file.

¢ Zip the file.

° Go to MDM — My Content — Add new content — Upload the zip and assign to your
account.

27

7. Frequently asked questions

What are commonly used applications on the PRO X?

In case any automated interaction with one of the pre-installed apps is required, this table
might come in handy.

Displayed app
name

Package

Main activity

Work App

com.webfleet.proapp

com.webfleet.proapp/.MainActivity

Vehicle Check
App

com.webfleet.vcheckapp

com.webfleet.vcheckapp/.MainAc-
tivity

TomTom GO com.tomtom.gplay.navapp.gofleet com.tomtom.mykonosap-

Fleet p/.MykonosAppActivity

Webfleet Up- com.tomtom.pnd.updater com.tomtom.pnd.updater/.Updat-
dater erActivity

External Camera

com.tomtom.videodockcamera

com.tomtom.videodockcamer-
a.VideoDockCameraActivity

Quick setting:
Bluetooth

com.prox.shortcut.bluetooth

com.prox.shortcut.MainActivity

Quick setting:
Display

com.prox.shortcut.display

com.prox.shortcut.MainActivity

Quick setting:
Language

com.prox.shortcut.language

com.prox.shortcut.MainActivity

Quick setting:
Security

com.prox.shortcut.security

com.prox.shortcut.MainActivity

Quick setting:
WiFi

com.prox.shortcut.wifi

com.prox.shortcut.MainActivity

Phone com.google.android.dialer com.google.android.dialer.exten-
sions.GoogleDialtactsActivity

Chrome com.android.chrome com.google.android.app-
s.chrome.Main

Clock com.google.android.deskclock com.google.an-
droid.deskclock/com.an-
droid.deskclock.DeskClock

Messages com.google.android.apps.messag- com.google.android.apps.messag-

ing ing.ui.ConversationListActivity

Play Store com.android.vending com.google.android.finsky.activi-
ties.MainActivity

Camera com.android.camera2 com.android.camera.Camer-

aLauncher

28

Displayed app
name

Package

Main activity

Files com.android.documentsui2 com.android.docu-
mentsui2.files.FilesActivity

Photos com.google.android.apps.photos com.google.android.apps.photo-
s.home.HomeActivity

Calendar com.google.android.calendar com.google.android.calendar.Al-
[InOneCalendarActivity

Contacts com.google.android.contacts com.google.android.con-
tacts/com.android.contacts.activi-
ties.PeopleActivity

Drive com.google.android.apps.docs com.google.android.apps.doc-
s/.drive.app.navigation.Navigation-
Activity

Gmail com.google.android.gm com.google.android.gm.Conversa-
tionListActivityGmail

Maps com.google.android.apps.maps com.google.android.apps.map-
s/.MapsActivity

Meet com.google.android.apps.tachyon com.google.android.apps.tachy-
on/.ui.main.MainActivity

Music com.android.music com.android.music/.MusicBrowser-
Activity

Google com.google.android.googlequick- com.google.android.googlequick-

searchbox searchbox/.SearchActivity
Keep Notes com.google.android.keep com.google.android.keep/.activi-

ties.BrowseActivity

Sound Recorder

com.android.soundrecorder

com.an-
droid.soundrecorder/.SoundRecorder

Video

com.android.video

com.android.video/.VideoBrowser-
Activity

How to list packages & activities via adb

The command adb shell pm list packages allows you to see package names of all in-
stalled applications.

The command adb shell dumpsys package <package name> all then allows you to
find out which activity will respond to the category LAUNCHER, meaning this is the main
activity that is started when opening this app from the Android launcher.

In the example of Work App, the response looks like this (excerpt):

> adb shell dumpsys package com.webfleet.proapp all

Activity Resolver Table:

29

Non-Data Actions:
android.intent.action.MAIN:
ebSba5dl com.webfleet.proapp/.MainActivity filter a317836
Action: "android.intent.action.MAIN"
Category: "android.intent.category.LAUNCHER"

How to show current package and activity

When wanting to find out which application and activity is currently running in the fore-
ground of the PRO X, use this command:

adb shell "dumpsys activity activities | grep ResumedActivity"
In the case of Work App, this yields the following results:

topResumedActivity=ActivityRecord{91579e7 ul0 com.webfleet.proapp/.MainAc-
tivity} t55}

ResumedActivity: ActivityRecord{91579e7 u0 com.webfleet.proapp/.MainActivi-

ty} t55}

How to find out details from the Android manifest

With the help of the Android build tools, you will be able to inspect the manifest of an ap-

plication to find out important information about intents etc.

aapt dump xmltree <app apk file name> AndroidManifest.xml

30

Copyright notices

© 2025 Bridgestone Mobility Solutions B.V. All rights reserved. Webfleet is a registered
trademark of Bridgestone Mobility Solutions B.V. or one of its Affiliates.

31

	Welcome
	Develop
	1. Demo application
	2. Webfleet integration via PRO.connect SDK
	3. Navigation app integration
	3.1. Advanced integration via NavApp SDK
	3.1.1. Features of the SDK
	3.1.2. How to use it

	3.2. Basic integration via intents
	3.2.1. Location intents
	3.2.2. Navigation intents

	3.3. Getting ETA via WEBFLEET.connect

	4. Platform APIs
	4.1. Hotseat configuration
	4.2. Restrict application usage
	4.3. Enforcing online/allowing offline setup
	4.4. LED
	4.5. System properties
	4.6. Controlling power behaviour
	4.6.1. Receiving suspend/shutdown intents
	4.6.2. Actively suspend or shutdown the device

	4.7. Further options

	5. Platform customisation
	5.1. Delivery via Webfleet MDM
	5.2. Hotseat configuration
	5.2.1. Control visibility of hotseats

	5.3. Settings shortcut apps
	5.3.1. Using setting shortcuts for hotseat configuration

	5.4. Automatic app startup
	5.4.1. Behaviour
	5.4.2. Example

	5.5. Hardware button mapping
	5.5.1. Via UI
	5.5.2. Via configuration file

	5.6. Homescreen configuration
	5.6.1. Available options
	5.6.2. Example configuration

	5.7 Restrict application usage

	6. Device updates and backup
	6.1. Device recovery
	6.1.1. Keeping user data during the recovery
	6.1.2. Resetting custom app restrictions

	6.2. Applying customisations via MDM
	6.3. Shipping mode
	6.3.1. Enabling shipping mode

	6.4. Device backup

	7. Frequently asked questions

	Copyright notices

