
PRO 8 Driver Terminal
Developer documentation

1602849948866 - 1.3 - 2025-07-24

Contents
Welcome.. 4

Develop...5

PRO 8 NavApp SDK...6
PRO 8 is Android.. 6
Downloading the NavApp SDK...6
NavApp SDK javadoc documentation..6
Installing the SDK..6
Initialising the SDK..6
Using the API.. 7
Importing and exporting routes..8

Importing routes into Navigation.. 8
Exporting routes and saving routes to the device..8
Recording new routes... 10
Listening for speed limit changes..11

Map Library SDK..12
Downloading Map Library SDK..12
Map Library SDK javadoc documentation...12
Accessing the API functionality...12

Enabling and disabling zooming interaction... 12
Zooming the map programmatically.. 12
Getting the map scale.. 12
Setting the map scale... 13
Enabling and disabling panning interaction.. 13
Enabling and disabling autocenter..13
Change map orientation.. 13
Panning and setting the map center..14
Using map markers.. 14
Using map layers...15
Using Sensor Location..19

Installing the Map Library SDK...20
Defining the view in the layout XML... 21
Initialising and interfacing with the SDK..21

Development tools... 23
Taking Screenshots.. 23

System intents...24
Intents listened for... 24
Home screen...24

Open the home screen on the currently active page...24
Go to home and scroll to page number X..24
Go to home and scroll to the page holding the navigation widget.......................... 24
Open up the navigation page on home screen, or full screen navigation whichev-
er was last in use...25
Disable or enable items in group with an index number...25

Navigation application.. 25
Open the full screen Navigation..25
Import a single route into the Navigation application... 26
Import a list of routes into the Navigation application..26
Show the map at the given latitude and longitude...26
Plan a route to the given latitude and longitude... 26

Software updater.. 27
Remove APKs which are not installed by Software update application..................27

External camera application...27
Stop the external camera application... 27

2

System bar...27
Set Quick Launch button X with intent ‘intent_uri’... 27
Clear Quick Launch button X... 27

Intents broadcast.. 28
Receive a single route... 28
Receive multiple routes...28
Navigation app starts after a reboot...28
Update has started..29
System was successfully updated.. 29
Software update application encountered an error..29
Device needs to suspend/shutdown... 29
State of the ignition signal has changed... 29
Microphone connectivity state.. 30

Suspend Shutdown hooks...31
Power off states and reasons..34

Additional features...36
Connecting to an external camera..36
Android application installer..36
Privacy disclaimers... 37
Wake on SMS... 37

Customise...39

System Bar...40
Home screen...41

About the Home screen... 41
Driver Terminal... 41
Customising the home screen...42
Create multiple pages...42
Creating blank pages.. 42
Configuring the tiles..42
Screen orientation.. 43
Using a legacy configuration (widgets.json)...43
Section types..43

navigation..43
widget...44
application...45
video..45
app-browser...46

Updating application icons...47
Exporting a package list..47
Example 1 home screen layout JSON.. 47
Example 2 home screen layout JSON... 48
Adding multiple widgets and apps...50
Enabling and disabling shortcuts dynamically...50
Configuring the home screen with drag and drop.. 51

Settings..53
Exporting Settings..53
Rolling out settings to devices... 53

External Camera Application.. 54
Settings Customisation...54
Settings Attributes... 54

Start-up experience..57

Copyright notices... 58

3

Welcome

The PRO 8 Platform is a solution to help your business move more efficiently. It is a plat-
form to enable you to seamlessly connect your business applications with solutions from
Webfleet Solutions. Now, you can easily create your own customised business applications
that harness the power of TomTom's award-winning navigation technology and fleet man-
agement features from Webfleet Solutions.

The PRO 8 Developer documentation provides the growing base of developers a wealth of
information and documentation.

When using the term Driver Terminal or PRO 8 in this document, the following devices are
referred to:

• PRO 8475

• PRO 8375

• TomTom PRO 8270

• TomTom PRO 8275

If there are any exceptions applicable to individual devices only, those are highlighted sep-
arately.

4

Develop

5

PRO 8 NavApp SDK

PRO 8 is Android

A PRO 8 Driver Terminal is a standard Android device, currently running Android 6.0, API
level 23 (on PRO 8375 and TomTom PRO 827x) and Android 9.0, API Level 28 on PRO
8475. Minimal platform changes were done to improve the in-car experience, which means
that a PRO 8 Driver Terminal remains an Android device. Any apps that you can run on
other Android platforms, will run on the PRO 8 Driver Terminal as well, so you are free to
embellish the PRO 8 Driver Terminal experience with APKs of your own making, or any
third-party applications that your customers/users would find useful.

There is one notable exception to this: the launcher application. To provide as much pow-
er as possible to the user on their home screen, widgets are integrated directly into the de-
fault launcher. If you would like to use another launcher, be aware that the Navigation and
External camera widgets will not be available to you.

The PRO 8 SDK offers seamless integration of solutions from Webfleet Solutions with any
business application to help companies achieve their efficiency goals.

The SDK contains NavApp SDK and Map Library SDK which will enable you to integrate
your business applications with TomTom's advanced navigation software. They are de-
signed for ease of use: just add the SDKs to your application project and start navigating
from within your own app. The SDKs are initialised through a single API call as well as most
of the navigation API functions.

Downloading the NavApp SDK

You can download the NavApp SDK version 9 from the Downloads section of the Down-
loads portal.

NavApp SDK javadoc documentation

NavApp SDK documentation - interfacing to navigation.

Installing the SDK

Copy the navappclient.jar file into your application project libs directory. The file can be
found in the SDK which you downloaded from the portal.

Initialising the SDK

The NavApp SDK consists of a group of interfaces accessed through the NavAppClient
class.

To use the NavApp SDK you need to create an instance of the NavAppClient, using the
NavAppClient.Factory.make(Context, ErrorCallback) method.

The returned instance is used to access the individual APIs.

As instantiating the NavAppClient requires some background initialisation, the NavApp-
Client is preferably created once per application, e.g. in the Activity onCreate callback.

Once this call returns the NavAppClient instance is ready to use.

protected void onCreate(final Bundle savedInstanceState) {

6

https://developer.tomtom.com/bridge/downloads/downloads
https://developer.tomtom.com/bridge/downloads/downloads
https://bridge-files.tomtom.com/developer/sdk/docs/navappsdk_api9/javadoc/index.html

 // Instantiate the NavAppClient passing in a Context.
 mNavappClient = NavAppClient.Factory.make(this, mErrorCallback);
}

private final ErrorCallback mErrorCallback = new ErrorCallback() {
 @Override
 public void onError(final NavAppError error) {
 Log.e(TAG, "onError(" + error.getErrorMessage() + ")\n" + er-
ror.getStackTraceString());
 mNavappClient = null;
 }
};

And should be closed in the activity onDestroy callback, using NavAppClient.close()

protected void onDestroy() {
 mNavappClient.close();
}

Using the API

The NavAppClient instance can be used to access the APIs.

Retrieving information about the map

Note: Any callback from the SDK will be done on the UI Thread. All APIs will throw an Il-
legalArgumentException if the listener argument is null.

mSDKUtils = mNavappClient.getUtils();
mSDKUtils.getMapInfo(mMapInfoListener);

private MapInfo.Listener mMapInfoListener = new MapInfo.Listener() {
 public void onMapInfo(final MapInfo mapInfo) {
 Log.d(TAG, "name: " + mapInfo.getName() +
 "releaseNumber: " + mapInfo.getReleaseNumber() +
 "releaseDate: " + mapInfo.getReleaseDate() +
 "buildNumber: " + mapInfo.getBuildNumber() +
 "locationPath: " + mapInfo.getLocationPath());
 }
};

Planning a trip

mTripManager = mNavappClient.getTripManager();

final Routeable destination = mNavappClient.makeRouteable(DESTINATION_LATI-
TUDE, DESTINATION_LONGITUDE);
mTripManager.planTrip(destination, mPlanListener);

private Trip.PlanListener mPlanListener = new Trip.PlanListener() {
 public void onTripPlanResult(final PlanResult result) {
 Log.d(TAG, "onTripPlanResult result[" + result + "]");
 }
};

7

Importing and exporting routes
Importing routes into Navigation

The Navigation application handles the intent ACTION_SEND and ACTION_SEND_MULTIPLE
with mime types application/gpx and application/itn. This is useful if you want to im-
port routes directly into the Navigation application from a file explorer. However, if you
want to import routes from your application into Navigation, you can do it one at a time,
using the following intent.

For single .gpx or .itn file: tomtom.intent.action.IMPORT_SINGLE_ROUTE

The mime types are application/gpx and application/itn, for .gpx and .itn files respec-
tively. The following is an example to import .gpx routes to Navigation from an external
application.

Importing a single route to Navigation

private void importSingleRouteToNavigation(final File importfile) throws
 IOException {
 final Uri fileUri = Uri.fromFile(importfile);
 final Intent importToNavigationIntent = new Intent();
 importToNavigationIntent.setAction("tomtom.intent.action.IM-
PORT_SINGLE_ROUTE");
 importToNavigationIntent.putExtra(Intent.EXTRA_STREAM,
 fileUri).setType("application/gpx").setFlags(Intent.FLAG_ACTIVI-
TY_NEW_TASK);
 importToNavigationIntent.addFlags(Intent.FLAG_GRANT_READ_URI_PER-
MISSION);
 startActivity(importToNavigationIntent);
 }

To share routes from your application's internal data files, use FileProvider. Routes im-
ported into Navigation, can be found in the My Routes screen, in the main menu.

Exporting routes and saving routes to the device

All the routes (both .gpx files and .itn files appear on the My Routes screen. Only the .g-
px Routes can be exported to another application or saved to device from the My Routes
screen.

Indicates the itinerary files (.itn), which cannot be exported

Indicates the route files (.gpx), which can be exported

The routes to be exported can be selected by choosing Export Tracks on the contextual
menu on the My Routes screen.

8

Exporting .gpx routes from My Routes

Selecting routes to export

When a route or multiple routes are exported, you are presented with an option to send to
an application that handles the route files. To save the route on the device, send the routes
to Save to device application. This will save the selected routes in the Routes folder inter-
nally.

Saving routes to the device

If you want to send the route files to your own application, then your application must
handle the ACTION_SEND and ACTION_SEND_MULTIPLE intents, with mine type applica-
tion/gpx.

Intent filters in manifest file

<intent-filter>
 <action android:name="android.intent.action.SEND" />
 <category android:name="android.intent.category.DEFAULT" />

9

 <data android:mimeType="application/gpx" />
</intent-filter>

<intent-filter>
 <action android:name="android.intent.action.SEND_MULTIPLE" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="application/gpx" />
</intent-filter>

The route files can then be retrieved from the intent, as shown in the example below.

Retrieving route files from intent

final ArrayList uriList = new ArrayList()
if (Intent.ACTION_SEND.equals(intent.getAction())) {
 final Uri uri = (Uri) intent.getExtras().get(Intent.EXTRA_STREAM);
 uriList.add(uri);
}
else if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN && Inten-
t.ACTION_SEND_MULTIPLE.equals(intent.getAction())) {
 try {
 final ClipData clipData = intent.getClipData();
 if (clipData != null) {
 final Integer itemCount = (Integer) clipData.getItemCount();
 for (int i = 0; i < itemCount.intValue(); i++) {
 final Item clipDataItem = clipData.getItemAt(i);
 if (clipDataItem != null) {
 uriList.add(clipDataItem.getUri());
 }
 }
 }
 }
 catch (final IllegalArgumentException e) {
 if (Log.E) Log.e(TAG, e.getMessage());
 }
}

Generating input stream from file uri

final ParcelFileDescriptor inputPFD = mContentResolver.openFileDescrip-
tor(uri, "r");
final FileDescriptor fd = inputPFD.getFileDescriptor();
FileInputStream inputStream = new FileInputStream(fd);

Recording new routes

New routes can be created in the Navigation application, by using the Start Recording op-
tion in your main menu. When the recording starts, you can see a red dot on your Naviga-
tion screen.

To stop the recording, go back to the main menu and select the Stop Recording option.
Routes created this way, are listed in the My Routes screen in .gpx format. As such, they
can be exported to another application or saved to the device.

10

Listening for speed limit changes

NavApp is broadcasting intent action: tomtom.intent.action.SPEED_LIMIT_CHANGED in-
dicating that the speed limit has changed. An extra int newSpeedLimitExtra provides a
new speed limit in meters per hour.

11

Map Library SDK

This section describes the usage of the Map Library SDK. This library allows you to visu-
alise a map and interact with it. The Map Library SDK does not include any routing or navi-
gation functionality like the NavApp SDK does.

Downloading Map Library SDK

You can dowload the Map Library SDK version 11 from the Downloads section of this por-
tal.

For information on how to use the SDKs, please visit the pages containing example code:
Map Library SDK

Map Library SDK javadoc documentation

Map Library SDK - interfacing to a map view.

Accessing the API functionality

Below you will find some brief examples on how to achieve some of the functionality for
your app.

Enabling and disabling zooming interaction

 mMapController.setZoomEnabled(true); // Allow zooming interaction.
 mMapController.setZoomEnabled(false); // Disallow zooming interaction.
 if (mMapController.isZoomEnabled()) {
 // Zooming is enabled for the user.
 ...
 }

Zooming the map programmatically

 final int minZoomLevel = mMapController.getMinZoomLevel();
 final int maxZoomLevel = mMapController.getMaxZoomLevel();
 final int zoomLevel = mMapController.getZoomLevel();
 setZoomLevel(6);

Getting the map scale

The scale of a map is the ratio between a distance on the screen to that distance in the
world. So a scale of 1 means that there is a 1:1 ratio which in turn means that a centimeter
on screen is a centimeter in reality. A scale of 500 means that there is a 1:500 ratio which
means that a centimeter on screen is 500 centimeters in reality. The same goes for any
unit: 1:500 means 1 inch is 500 inches in reality, for example. In short, the higher the scale
value, the farther zoomed out the map will look on screen.

The zoom levels indicate how far zoomed in the map is, which means the higher the zoom
level, the lower the scale value. For example, zoom level 20 is defined as scale 1:500, while
zoom level 13 is scaling the map to 1:64,000. The default scale value is 1:8000, which is
equivalent to zoom level 16.

12

https://developer.tomtom.com/bridge/downloads/downloads
https://bridge-files.tomtom.com/developer/sdk/docs/maplibsdk_api11/javadoc/index.html

Finding out at which scale the map is drawn, can be done using the getMapScale() func-
tion:

 final int scale = mMapController.getMapScale();

Setting the map scale

For an explanation of what a scale value means, refer to Getting the map scale.

Setting the scale of the map is fairly simple. You call setMapScale(scale) and the map
will be drawn in that scale.

 mMapController.setMapScale(8000);
 final int actualScale = mMapController.getMapScale();

The scale value must fall within a range that can be supported by both the map renderer
and the map itself; a typical range could be 500 to 225.966.736. The value that you're try-
ing to set might therefore not be the scale that will be used in the end. To verify what scale
you ended up with, check getMapScale() afterwards. Values that fall outside of the sup-
ported range, will be clamped to the nearest possible value. So trying to set the scale to
100 when the map only supports 500 and higher, will scale the map to 1:500.

Enabling and disabling panning interaction

 mMapController.setPanEnabled(true); // Allow panning interaction.
 mMapController.setPanEnabled(false); // Disallow panning interaction.
 if (mMapController.isPanEnabled()) { // Panning is enabled for the
 user.
 ...
 }

Enabling and disabling autocenter

 mMapController.setAutoCenterEnabled(true); // Enables autocenter.
 mMapController.setAutoCenterEnabled(false); // Disables autocenter.
 if (mMapController.isAutoCenterEnabled()) { // Autocenter is enabled.
 ...
 }

Change map orientation

From version 16 (release 18.6) onward, you can determine the orientation of the map. Up
until version 15, the map is always facing due North by default. Version 16 makes it possible
to have the map align with the driving direction.

 mMapController.setMapOrientation(MapController.MAP_ORIEN-
TATION.DRIVING_DIRECTION); // Align map to heading.
 ...
 if (mMapController.getMapOrientation() == MapController.MAP_ORIEN-
TATION.DRIVING_DIRECTION) { // Following device heading.
 ...
 }
 mMapController.setMapOrientation(MapController.MAP_ORIEN-
TATION.NORTH_UP); // Back to default behaviour.

Also note that with the map orientation set to DRIVING_DIRECTION it is not possible to pan
the map, and disabling autocenter will be ignored. Panning is only possible while the map
is oriented NORTH_UP.

13

Please also be aware that the options to set map orientation are only available on NDS
builds. On earlier builds these calls will have no effect, or simply return default values.

Panning and setting the map center

If the requested location is near to the currently viewed location, the map will pan towards
the location. If the location is too far away for smooth panning, it will instantly display the
location. You can center on a Location object or use latitude and longitude directly, as well
as centering the map to the current GPS location.

Getting the current map center

This will return the current location the map view has been panned to. This is not necessar-
ily the current location of the device.

 final Location location = mMapController.getMapCenter();

Set map center using Location class

 final Location location = new Location("TomTom");
 location.setLatitude(52.3764293);
 location.setLongitude(4.908397);
 mMapController.setMapCenter(location);

Set map center using latitude and longitude

 mMapController.setMapCenter(52.3764293, 4.908397);

Set map center using current location

 mMapController.setMapCenterToCurrentLocation();

Auto-centering map

 mMapController.setAutoCenterEnabled(true); // Map will follow my cur-
rent position.
 if (mMapController.isAutoCenterEnabled()) {
 // The map is currently following my current position.
 ...
 }

Using map markers

Markers are locations on the map that have a visual indicator, also known as push pins.
Map library provides a means to add default and custom markers to the MapView that the
user can interact with. You will be notified of touch events and can act on them using the
information of the selected marker, which includes world location and screen position.

Markers will pan with the map to keep indicating the location they were placed at. When
the map is zoomed, marker icons will stay the same size.

Adding a default marker

To add a marker using the default marker icon, you call the createMarkerAt function.

 final Marker marker = mMapController.createMarkerAt(52.3764293,
14

 4.908397);

Removal of markers is done through this call:

 mMapController.removeMarker(marker);

Adding a marker

Markers can be grouped into layers, which can be individually hidden and shown. This al-
lows for choosing which markers to show at which time. So in order to create a Marker
you'll first need a MarkerLayer. With that layer you can create the markers that should be
part of that layer.

 final MarkerLayer layer = mMapController.createLayer();
 final Marker marker = layer.createMarkerAt(52.3764293, 4.908397);

Removal of markers is done through this call:

 layer.removeMarker(marker);

Giving a marker a custom icon

If the default icon is not what you want, you have the option to give each marker a differ-
ent one. The Map library can read image files from internal/external storage and also ac-
cepts Drawable's.

The anchor point is the point on the icon that sticks to the location, or points to where the
location of the marker is. The center of the icon is at (0, 0). The right side equals 1, while
the left side equals -1; similar for the bottom and top sides. So, the bottom left corner of
the icon would be at (-1, 1).

 // Using a file path.
 final String iconPath = "/absolute/path/to/an/icon.png";
 marker.setIcon(iconPath);
 marker.setAnchorPoint(-1, 1);
 ...
 // Using a Drawable.
 marker.setIcon(getResources().getDrawable(R.drawable.marker_icon));

Query for markers

To obtain a list of all markers currently on the map, you call getMarkers. This will return a
list of all(!) markers, not just the ones that are currently visible.

 final List<Marker> markers = mMapController.getMarkers();

To obtain a list of all markers of a MarkerLayer, you call getMarkers. This will return a list
of all the markers of that layer, not just the ones that are currently visible.

 final List<Marker> markers = layer.getMarkers();

Using map layers

Layers are groups of visual elements, either stock or custom. Layers can be hidden or
shown individually and they are considered as an ordered set for visualisation and selec-
tion.

15

Stock layers

Stock layers are those defined in the StockLayers class. These layers contain predefined
elements such as the route, traffic, etc. By default these stock layers are hidden. To change
visibility of a stock layer, use the showLayer method.

 final MapController controller = mMapView.getMapController();
 controller.setLayerVisibility(StockLayers.ROUTE_LAYER, true);
 controller.setLayerVisibility(StockLayers.TRAFFIC_LAYER, true);

Renderable layers

A RenderableLayer is where Renderables, like Polylines, are stored so they will be
drawn onto the map. MapController has one RenderableLayer that is always present and
can be obtained by calling getRenderableLayer(). Since RenderableLayer is a compos-
ite, it's possible to place one or more RenderableLayer inside another. Just create a new
RenderableLayer and add it to an existing RenderableLayer.

Renderables have a Z-index property. The Z-index determines where in the layer this Ren-
derable will be drawn, relative to other Renderables. A higher value means it will get
drawn above any Renderable with a lower Z-index. The order in which Renderables with
the same Z-index are drawn is undefined; if order is important, use the Z-index property to
control the order. The default Z-index is zero.

When you do not need a Renderable any more, you need to free its allocated resources by
calling Renderable.release().

Polylines

The Maplib SDK offers the ability to draw polylines on the map. A polyline is a continuous
line composed of one or more line segments defined in GeoPoint, consisting of a latitude
and a longitude value.

A PolylineBuilder object is used to create a new Polyline. You can add the points to
it, and set other properties like line width and color. Next you add the polyline to a Ren-
derableLayer. The line segments are drawn between the points in the order in which you
added them to the PolylineBuilder.

The following code snippet illustrates how to add a polyline to a map:

 final RenderableLayer renderableLayer = mMapController.getRender-
ableLayer();
 renderableLayer.add(new PolylineProperties()
 .color(Color.RED)
 .width(5f)
 .add(new GeoPoint(52.375663, 4.907869))
 .add(new GeoPoint(52.377307, 4.900070))
 .add(new GeoPoint(52.378617, 4.902816))
 .build()
);

This will produce a red polyline on the map, 5 pixels wide, in the Amsterdam area. Note
that this polyline will be opaque since the colour is not given an alpha value. Transparent
polylines need an alpha value less than the maximum. See the Android Color class for de-
tails.

To remove a Polyline from the map, use RenderableLayer.remove(Renderable) and
use your Polyline as an argument.

16

Polygons

The Maplib SDK offers the ability to draw polygons on the map. A polygon is an enclosed
shape that can be used to highlight areas on the map. The outline is a continuous line com-
posed of one or more line segments defined in GeoPoint, consisting of a latitude and a
longitude value. Polygons are self closing, which means that there is no need to repeat the
first point at the end in order to get a closed shape; the line segment from the last point
back to the first is implied.

Currently supported polygon types are convex and (weakly) simple concave polygons.
Please note that self-intersecting polygons will not be filled but drawn as closed polylines.

A PolygonBuilder object is used to create a new Polygon. You can add the points to it,
and set other properties like stroke width and fill colour. The points should be added in
counter clockwise order; the result is undefined when they are not. Next you add the poly-
gon to a RenderableLayer.

To briefly explain counter clockwise points: if you imagine the hours on the face of a clock
to be 12 points of a polygon, then the list of points will have to be added counter clock-
wise: 12, 11, ..., 2, 1. The starting point is irrelevant as long as the direction is correct. Another
way to look at it is that the left side of each line segment is the interior of the polygon.

The following code snippet illustrates how to add a polygon to a map:

 final RenderableLayer renderableLayer = mMapController.getRender-
ableLayer();
 renderableLayer.add(new PolygonProperties()
 .fillColor(Color.argb(127, 80, 80, 80))
 .strokeColor(Color.BLUE)
 .strokeWidth(7f)
 .zIndex(2)
 .add(new GeoPoint(52.376217, 4.907824))
 .add(new GeoPoint(52.376225, 4.907883))
 .add(new GeoPoint(52.376315, 4.908585))
 .add(new GeoPoint(52.376466, 4.908602))
 .add(new GeoPoint(52.376536, 4.908104))
 .add(new GeoPoint(52.376476, 4.907687))
 .build()
);

This will produce a gray polygon with a blue outline on the map, the maximum of 7 pixels
wide, in the Amsterdam area. Because it is given a Z-index of 2, it will be drawn on top of
any other Renderable with a Z-index of 1 or lower.

Also note that we get 50% transparency, by giving our fillColor an alpha value of 50%;
127 is about half of 255, the maximum value. The same can be done for the strokeColor.

To remove a Polygon from the map, use RenderableLayer.remove(Renderable) and use
your Polygon as an argument.

Tiling images to fill polygons

By default, polygons are filled using a colour but one can also use an image. This texture is
a Drawable from your app's resources. Possible applications are zoning and spatial plan-
ning, or any other reason to indicate land use like no-go areas, range indication, permit
zones, etc.

Textures are tiled horizontally and vertically, like the background of an HTML page, and
they have the size of their original source, the Drawable. When zooming the map in or out,
this size will remain the same; so the texture is not resized when the zoom level changes!
This ensures that the tiles are always recognisable, instead of them getting smaller and
smaller when you zoom out, for example.

17

The texture has its own alpha channel, with which you can make the polygon interior (par-
tially) transparent. Changing it with setTextureAlpha(190) for example, which is 75% of
255, the fully opaque value, will let the map underneath your polygon shine through some-
what. Using a partially transparent Drawable will do the same, giving you the option to
have completely transparent areas between partially transparent areas.

The texture can be made (partially) transparent. Changing it with setTextureAlpha(190)
for example, which is 75% of 255, the fully opaque value, will let the map underneath your
polygon shine through somewhat. The texture is drawn taking the source image's trans-
parency information into account. This means that any transparent pixels in the original im-
age will be just as transparent when used as a texture.

 final Polygon polygon = new PolygonBuilder()
 .add(52.373620, 4.908018)
 .add(52.373545, 4.909971)
 .add(52.374750, 4.910250)
 .add(52.374973, 4.908222)
 .texture(this, R.drawable.dots)
 .textureAlpha(190)
 .build();

Image overlay

Polylines and polygons provide a way to draw shapes onto the map, that are relative-
ly easy to define, since we are going from point to point which all have the same colour.
What if we want to show something more complex over an area on the map, like weath-
er radar images, full featured floor plans for big buildings like shopping malls, or contour
lines like isobars including gradients in between. Then we need to overlay that image on
the map and dispense with points and lines.

The image is locked in place by two coordinates: the North-West and the South-East cor-
ner of the image. The image is rectangular and will be stretched across the map between
the given locations. Non-rectangular shapes can be obtained by using transparency in the
image itself, which is a separate value from the overall transparency of the entire image.

Like with the Polyline and Polygon, an ImageOverlay is constructed by using a builder:
ImageOverlayBuilder. You set the required properties in the builder and let it create the
ImageOverlay for you, which you can then add to a RenderableLayer so it will be dis-
played.

 final ImageOverlay overlay = new ImageOverlayBuilder()
 .nw(52.3031428, 4.9479324)
 .se(52.30177, 4.9510746)
 .image(this, R.drawable.weather)
 .alpha(190)
 .build();

Listen for map events

Touch events are processed by views. Therefore, listening for touch events in the Map Li-
brary is done by registering a MapListener with the MapView.

 mMapView.addMapListener(new MyMapListener());

Your MapListener implementation can then respond to touch events on the map.

 private class MyMapListener implements MapListener {
 @Override
 void onMarkerSelected(final Marker marker, final TouchType
 touchType) {
 ...

18

 }

 @Override
 void onRenderableSelected(final Renderable renderable, final int x,
 final int y,
 final TouchType touchType) {
 ...
 }

 @Override
 void onMapTouched(final int x, final int y, final TouchType
 touchType) {
 ...
 }

 @Override
 public void onDrag(final int prevX, final int prevY, final int
 newX, final int newY) {
 ...
 }
 }

onMarkerSelected, onRenderableSelected, onMapTouched functions will be called with:

Touch type When

SINGLE_TAP A single tap on a marker, renderable or
map.

LONG_PRESS_BEGIN The user is touching a marker, renderable or
map for a prolonged time.

LONG_PRESS_END The user stopped touching the marker, ren-
derable or map for a prolonged time.

In order to obtain the screen position of that marker, you can use the LocationConverter.
The fromLocation function, giving it the world location of that marker, will return a Point
with the on screen position. You can use this to position popup menu's, for example.

Similiarly, to get the geopoints from screen position (x, y), also use the LocationConvert-
er. For example:

 final Location location = mMapController.getLocationConvert-
er().toLocation(x, y);
 final GeoPoint geoPoint = new GeoPoint(location);

onMarkerSelected() callback has the highest priority. If your marker and renderable
(Polygon, Polyline, Image) overlap, then you will receive an onMarkerSelected() callback
when you touch the overlapping area.

onRenderableSelected() is received only when the renderable is made selectable by set-
ting setSelectable(true); Renderable's are not selectable by default. When selectable
renderables overlap, the topmost renderable is returned by this callback.

onMapTouched() is received when there is no marker or renderable at the touch point.

Using Sensor Location

There are two ways to obtain the current location in your application. First is a map
matched location which is calculated with a location provider's data and a map. Second

19

is a non-map matched location (Sensor Location) which is your absolute location without
map influence.

Enabling Sensor Location

By default your application uses the map matched location. To enable Sensor Location you
need use the following MapController method:

 void setSensorLocationEnable(final boolean enable, final Drawable
 icon);

enabled When true then map sensor location is enabled; when false, the
matched location is used

icon An icon to show the location as reported by the sensor. The icon must
point to due north at the top of the image.

You can provide your own icon using a drawable. This icon will change its orientation de-
pending on the bearing, the top of the image pointing to the direction of travel.

Important! Always disable the Sensor Location when not needed since listening to the lo-
cation consumes more battery power.

 @Override
 public void onStart() {
 super.onStart();
 final MapController controller = mMapView.getMapController();
 controller.setSensorLocationEnable(true);
 }
 ...
 @Override
 public void onStop() {
 super.onStop();
 final MapController controller = mMapView.getMapController();
 controller.setSensorLocationEnable(false);
 }

Retrieving Sensor Location state

To know the state of the current location provider you can use this MapController
method:

 boolean isSensorLocationEnabled();

true The current location is continously set using the GNSS sensor informa-
tion.

false The current location is never set using the GNSS sensor information.

Installing the Map Library SDK

Copy the maplibsdk.jar and mapviewer2.jar files into your application project libs di-
rectory. The files can be found in the libs directory in the SDK Zip file which you down-
loaded.

Because the Map Library communicates with NavKit via a network interface, your applica-
tion is required to have the INTERNET permission, even though you might not do anything
with networking. So add this to your applications AndroidManifest.xml:

<uses-permission android:name="android.permission.INTERNET" />

20

Defining the view in the layout XML

 ...
 <com.tomtom.pnd.maplib.MapView
 android:id="@+id/mapview"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>
 ...

Initialising and interfacing with the SDK

The Map Library uses the same MapKit engine as the Navigation application does. The
MapKit engine is used via runtime connections, which means that these connections might
disappear at some point. For this reason you cannot just control your map, you need to
maintain a connection to it. You are shielded from the details of this and only have to mon-
itor two simple events to know whether or not your map is ready for use.

You need to implement the MapEventsCallbacks interface and set an instance of this call-
back on the MapView object. The first step is to implement the callback interface:

public class MainActivity extends FragmentActivity
 implements MapEventCallbacks {
 ...
}

Initialise the MapView object in your application and request a MapController instance
with the getMapControllerAsync call:

 @Override
 protected void onCreate(final Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mMapView = (MapView) findViewById(R.id.mapview);
 mMapView.getMapControllerAsync(this);
 ...
 }

Use the onMapConnected(MapController) callback method to get a handle to the Map-
Controller object. The callback is triggered when the MapController is ready to be used.
It provides a non-null instance of MapController.

You can use the MapController object to set the view options for the map or add mark-
ers, for example. In onMapDisconnected() you need to set your reference to the MapCon-
troller to null and stop interacting with the map until the connection is restored.

 @Override
 public void onMapConnected(final MapController controller) {
 mMapController = controller;
 }

 @Override
 public void onMapDisconnected() {
 mMapController = null;
 }

The overloaded onResume() and onPause() need to inform the MapView when the activity
enters these states. Otherwise MapKit will keep using resources like a foreground applica-
tion.

 @Override
 protected void onResume() {

21

 super.onResume();
 if (mMapView != null) {
 mMapView.onResume();
 }
 ...

 @Override
 protected void onPause() {
 super.onPause();
 if (mMapView != null) {
 mMapView.onPause();
 }
 ...

22

Development tools

Taking Screenshots

With the PRO 8 Driver Terminal connected to a development PC, you can take screenshots
directly to the PC by using eclipse DDMS camera functionality. In eclipse go the the DDMS
view, select the PRO 8 Driver Terminal and click the Camera icon.

Alternatively you can take a screenshot via adb using screencap -p >/sdcard/screen-
shot.png.

To take screenshots without a PC attached long press the power button and select
Take a screenshot. The screenshots are stored in the following location: /sdcard/Pic-
tures/Screenshots.

23

System intents

Intents listened for

The PRO 8 Driver Terminal has a few additional intents that it responds to. Find a list of
these intents and their effect below. Please refer to their respective documentation for
more detailed information.

Home screen
Open the home screen on the currently active page

Action action.MAIN

Activity com.tomtom.navpad.navapp/.NavPadNavAppActivity

Data URI
scheme

None

MIME Type None

Go to home and scroll to page number X

Action action.VIEW

Activity com.tomtom.navpad.navapp/.NavPadNavAppActivity

Data URI
scheme

page:navigation

MIME Type None

Category category.HOME

Example: Go to page 2 on home screen

adb shell am start -a android.intent.action.VIEW -c android.intent.catego-
ry.HOME -d "page:2"

Go to home and scroll to the page holding the navigation widget

Action action.VIEW

Activity com.tomtom.navpad.navapp/.NavPadNavAppActivity

Data URI
scheme

page:navigation

MIME Type None

Category category.HOME

Example:

adb shell am start -a android.intent.action.VIEW -c android.intent.catego-
24

ry.HOME -d "page:navigation"

Open up the navigation page on home screen, or full screen navigation whichever was
last in use

Action tomtom.intent.action.SHOW_NAVAPP

Data URI
scheme

None

MIME Type None

Disable or enable items in group with an index number

Action action.VIEW

Activity com.tomtom.navpad.navapp/.NavPadNavAppActivity

Data URI
scheme

None

MIME Type None

Extras

enable true/false

index [0-256]

Category category.HOME

Navigation application
Open the full screen Navigation

Action action.MAIN

Activity com.tomtom.navpad.navapp/.NavPadNavAppActivity

Data URI
scheme

None

MIME Type None

Category

category.LAUNCHER

category.APP_MAPS

category.DEFAULT

Example:

adb shell am start com.tomtom.navpad.navapp/.NavPadNavAppActivity

25

Import a single route into the Navigation application

Action tomtom.intent.action.IMPORT_SINGLE_ROUTE

Data URI
scheme

File URI to the route

MIME Type application/gpx

application/gpx+xml

application/itn

Category category.DEFAULT

Import a list of routes into the Navigation application

Action tomtom.intent.action.IMPORT_MULTIPLE_ROUTES

Data URI
scheme

ArrayList of File URIs to the routes

MIME Type application/gpx

application/gpx+xml

application/itn

Category category.DEFAULT

Show the map at the given latitude and longitude

Action action.VIEW

Data URI
scheme

geo:<latitude>,<longitude>

geo:<latitude>,<longitude>?z=<zoom> (zoom is currently ignored)

geo:0,0?q=<latitude>,<longitude>(<label>) (with a string label)

MIME Type None

Category category.DEFAULT

Plan a route to the given latitude and longitude

Action action.VIEW

Data URI
scheme

google.navigation:q=<latitude>,<longitude>

google.navigation:q=<latitude>,<longitude>?z=<zoom> (zoom is
currently ignored)

google.navigation:q=<latitude>,<longitude>(<label>) (with a
string label)

MIME Type None

Category category.DEFAULT

26

Software updater
Remove APKs which are not installed by Software update application

Action tomtom.intent.action.REMOVE_THIRDPARTY_APKS

Data URI
scheme

None

MIME Type None

Example:

adb shell am broadcast -a tomtom.intent.action.REMOVE_THIRDPARTY_APKS

External camera application
Stop the external camera application

Action com.tomtom.videodockcamera.intent.action.FINISH

Data URI
scheme

None

MIME Type None

Example:

adb shell am broadcast -a com.tomtom.videodockcamera.intent.action.FINISH

System bar
Set Quick Launch button X with intent ‘intent_uri’

Note: Available only for TomTom PRO 827x devices and not for PRO 8475 and PRO 8375.

Action tomtom.intent.action.SET_QUICKLAUNCHBUTTON

Extras

button 0/1(Integer)

intent_uri URI string for the intent, starting
with #intent..(String)

Example: Set the Quick Launch button 1 with Settings application for Restricted user

adb shell "am broadcast --user 10 -a tomtom.intent.action.SET_QUICKLAUNCH-
BUTTON --ei button 1 -e intent_uri '#Intent;action=android.intent.ac-
tion.MAIN;category=android.intent.category.LAUNCHER;component=com.an-
droid.settings/.Settings;end'"

Clear Quick Launch button X

Note: Available only for TomTom PRO 827x devices and not for PRO 8475 and PRO 8375.

Action tomtom.intent.action.CLEAR_QUICKLAUNCHBUTTON

27

Extras

button 0/1(integer)

Example: Clear the Quick Launch button 0 for Owner user

adb shell am broadcast --user 0 -a tomtom.intent.action.CLEAR_QUICKLAUNCH-
BUTTON --ei button 0

Intents broadcast

PRO 8 Driver Terminal also broadcasts intents on certain occasions. Please refer to their
respective documentation for more detailed information.

Receive a single route

Action action.SEND

Data URI
scheme

None

MIME Type application/gpx

application/gpx+xml

Category category.DEFAULT

Receive multiple routes

Action action.SEND_MULTIPLE

Data URI
scheme

None

MIME Type application/gpx

application/gpx+xml

Extras

Category category.DEFAULT

Navigation app starts after a reboot

Action com.tomtom.action.FIRSTRUN

Data URI
scheme

None

MIME Type None

Category category.DEFAULT

28

Update has started

Action tomtom.intent.action.UPDATE_STARTED

Data URI
scheme

None

MIME Type None

System was successfully updated

Action tomtom.intent.action.UPDATE_FINISHED

Data URI
scheme

None

MIME Type None

Software update application encountered an error

Action tomtom.intent.action.UPDATE_ERROR

Data URI
scheme

None

MIME Type None

Device needs to suspend/shutdown

Action android.intent.action.ACTION_REQUEST_CONFIRM_SUSPEND_SHUT-
DOWN

Data URI
scheme

None

MIME Type None

Category category.DEFAULT

State of the ignition signal has changed

Note: Available only for TomTom PRO 827x devices and not for PRO 8475 and PRO 8375.

Action tomtom.intent.action.IGNITION_STATE_CHANGED

Data URI
scheme

None

MIME Type None

29

Extras

tomtom.intent.ex-
tra.IGNITION_ON

A boolean extra that indicates if
the ignition is on or not. The ig-
nition state can also be queried
from the TomTom addon with the
DockControl.getIgnitionOn()
API.

Microphone connectivity state

Note: Available only for TomTom PRO 827x devices and not for PRO 8475 and PRO 8375.

Action tomtom.media.TOMTOM_DOCK_MIC_PLUG_ACTION

Data URI
scheme

None

MIME Type None

30

Suspend Shutdown hooks

The PRO 8 Driver Terminal allows you to intervene when it is about to be suspended or
shut down. It will look for apps listening for the ACTION_REQUEST_CONFIRM_SUSPEND_SHUT-
DOWN intent and if one is installed, control over the suspend/shutdown flow is handed over
to this app. This can be useful for situations where you do not want the device to sus-
pend/shutdown because some process is not finished or users first need to log out of their
own systems, for example.

The intent comes with two integer extras: poweroff_state and poweroff_reason. The
former indicates the state the system is trying to get to, 1 for a shutdown and 2 to be sus-
pended, and the reason gives an indication why the device is trying to get to that state:

Value Reason

0 By user request, eg. the power button was pressed

2 Screen timeout

3 Disconnected from power

5 Application request

Once you have decided to proceed with the suspend/shutdown it's the app's responsibility
now to make that happen!

PRO 8270 and PRO 8275

On PRO 8270 and PRO 8275 devices, the following permissions and a static broadcast re-
ceiver for ‘android.intent.action.ACTION_REQUEST_CONFIRM_SUSPEND_SHUTDOWN’
are required:

<!-- Permissions needed -->
<uses-permission android:name="android.permission.DEVICE_POWER" />
<uses-permission android:name="android.permission.SHUTDOWN" />
...
<!-- Priority needed > 5 -->
<intent-filter android:priority="10" >
 <action android:name="android.intent.action.ACTION_REQUEST_CONFIR-
M_SUSPEND_SHUTDOWN" />
 <category android:name="android.intent.category.DEFAULT" />
</intent-filter>

Suspending a device is not possible anymore with the public Android API (starting with
Android 5) and requires the use of reflection:

 private void suspend() {
 // With API 21, goToSleep was removed from the PowerManager API but
 is still
 // publicly available via reflection.
 try {
 final Class<?> PowerManagerClazz = Class.forName("an-
droid.os.PowerManager");
 final Method goToSleep = PowerManagerClazz.getMethod("go-
ToSleep", long.class);
 final PowerManager pm = (PowerManager) context.getSystemSer-
vice(Context.POWER_SERVICE);
 goToSleep.invoke(pm, SystemClock.uptimeMillis());
 } catch (final SecurityException | NoSuchMethodException | Ille-

31

galAccessException | InvocationTargetException | ClassNotFoundException e)
 {
 Log.e(TAG, e.getMessage(), e);
 }
}

PRO 8475

On PRO 8475 devices, the following permissions and a static broadcast receiver for
‘com.webfleet.prosystemapp.ACTION_REQUEST_CONFIRM_SUSPEND_SHUTDOWN’ are
required:

<uses-permission android:name="com.webfleet.prosystemapp.permission.RE-
QUEST_SUSPEND_SHUTDOWN"/>
...
<receiver
 android:name=".SuspendShutdownReceiver"
 android:exported="true"
 android:enabled="true"
 android:permission="com.webfleet.prosystemapp.permission.RE-
QUEST_SUSPEND_SHUTDOWN">
 <intent-filter android:priority="10">
 <action android:name="com.webfleet.prosystemapp.ACTION_REQUEST_CON-
FIRM_SUSPEND_SHUTDOWN" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
</receiver>

The priority of the broadcast receiver should be higher than 0 to receive the power intent.

An example broadcast receiver looks as follows:

public class SuspendShutdownReceiver extends BroadcastReceiver {
 public enum PowerOffReason {
 USER(0),
 TIMEOUT(2),
 UNPLUGGED(3),
 SYSTEM(5),
 UNDEFINED(-1);

 private final int val;

 PowerOffReason(int val) {
 this.val = val;
 }

 public int getVal() {
 return this.val;
 }

 public static PowerOffReason fromInt(int val) {
 for (PowerOffReason reason : PowerOffReason.values()) {
 if (val == reason.getVal()) {
 return reason;
 }
 }
 return UNDEFINED;
 }
 }

 public enum PowerOffState {
 SHUTDOWN(1),

32

 SUSPEND(2),
 UNDEFINED(-1);

 private final int val;

 PowerOffState(int val) {
 this.val = val;
 }

 public int getVal() {
 return this.val;
 }

 public static PowerOffState fromInt(int val) {
 for (PowerOffState state : PowerOffState.values()) {
 if (val == state.getVal()) {
 return state;
 }
 }
 return UNDEFINED;
 }
 }

 public static final String ACTION_REQUEST_CONFIRM_SUSPEND_SHUTDOWN =
 "com.webfleet.prosystemapp.ACTION_REQUEST_CONFIRM_SUSPEND_SHUTDOWN";
 public static final String REQUEST_SHUTDOWN_ACTION = "com.tomtom.p-
nd.navpadsystemapp.ACTION_REQUEST_SHUTDOWN";
 public static final String REQUEST_SUSPEND_ACTION = "com.tomtom.p-
nd.navpadsystemapp.ACTION_REQUEST_SUSPEND";
 public static final String POWEROFF_REASON_KEY = "poweroff_reason";
 private static final String POWEROFF_STATE_KEY = "poweroff_state";
 private static final String PRO_SYSTEM_APP = "com.tomtom.pnd.navpadsys-
temapp";

 @Override
 public void onReceive(final Context context, final Intent intent)
 {
 if (ACTION_REQUEST_CONFIRM_SUSPEND_SHUTDOWN.equals(intent.getAc-
tion()))
 {
 final Bundle bundle = intent.getExtras();
 if (bundle != null)
 {
 final KeyguardManager km = (KeyguardManager) getApplica-
tionContext().getSystemService(Context.KEYGUARD_SERVICE);
 final int powerOffReasonValue = bundle.getInt(POWEROF-
F_REASON_KEY, -1);
 final PowerOffReason powerOffReason = PowerOffRea-
son.fromInt(powerOffReasonValue);
 final int powerOffStateValue = bundle.getInt(POWEROFF_S-
TATE_KEY, -1);
 final PowerOffState powerOffState = PowerOffState.fromIn-
t(powerOffStateValue);

 switch (powerOffReason)
 {
 case UNPLUGGED:
 // intended fall-through
 case SYSTEM:
 // intended fall-through

33

 case USER:
 // If there a screen lock in place, always suspend
 or shutdown the device immediately
 if (km.isKeyguardLocked()) {
 // In order to suspend the device, an intent
 needs to be sent back to the PRO system app
 if (powerOffState == PowerOffState.SUSPEND) {
 final Intent suspendIntent = new Intent(RE-
QUEST_SUSPEND_ACTION);
 suspendIntent.setPackage(PRO_SYSTEM_APP);
 context.sendBroadcast(suspendIntent);
 // In order to shut down the device, an intent
 needs to be sent back to the PRO system app
 } else if (powerOffState == PowerOffState.SHUT-
DOWN) {
 final Intent shutdownIntent = new Inten-
t(REQUEST_SHUTDOWN_ACTION);
 shutdownIntent.setPackage(PRO_SYSTEM_APP);
 context.sendBroadcast(shutdownIntent);
 } else {
 Log.w("SuspendShutdownReceiver", "Unsup-
ported power off state: " + powerOffState);
 }
 }
 break;
 case TIMEOUT:
 // In case of a screen timeout we directly suspend
 the device
 final Intent suspendIntent = new Intent(RE-
QUEST_SUSPEND_ACTION);
 suspendIntent.setPackage(PRO_SYSTEM_APP);
 context.sendBroadcast(suspendIntent);
 break;
 default:
 break;
 }

 }
 }
 }
}

Power off states and reasons

The following power off states and reason are sent when registering for suspend/shut-
down hooks on PRO 8270, PRO 8275 and PRO 8475 devices:

Value Power off state

1 Shutdown

2 Suspend

Value Power off reason

0 By user request, eg. the power button was pressed

34

Value Power off reason

2 Screen timeout

3 Disconnected from power

5 Application request

35

Additional features

Connecting to an external camera

Note: Available only for TomTom PRO 827x devices and not for PRO 8475 and PRO 8375.

PRO 8 Driver Terminal devices support an external video camera connection – available
with each cradle of PRO 8475, PRO 8375 or via the video cradle for TomTom PRO 8275
(shipped with TRUCK version).

Applications that want to use an external camera, should use the standard Android Cam-
era API.

Here are some hints for using the external camera in app development:

1. The external camera is identified as the front facing camera.

2. The external camera has a constant resolution of 640x480. It does not depend on the
actual camera hardware that is used.

3. The intent sent when the external video becomes available is:

 "tomtom.intent.action.VIDEO_AVAILABLE"

and when it becomes unavailable:

"tomtom.intent.action.VIDEO_UNAVAILABLE"

4. When tomtom.intent.action.VIDEO_AVAILABLE is sent, it means that the video dock
was just connected and the initialisation of the video camera has started. It might take
up to 3 seconds to set up the camera. In this case, Camera.open(camId) will throw a
RuntimeException. To deal with this situation consider the following piece of code:

 int count = 0;
 Camera camera = null;
 do {
 try {
 for (int camId = 0; camId < Camera.getNumberOfCameras(); camId
++) {
 CameraInfo camInfo = new CameraInfo();
 Camera.getCameraInfo(camId, camInfo);
 if (camInfo.facing == CameraInfo.CAMERA_FACING_FRONT) {
 camera = Camera.open(camId);
 break;
 }
 }
 } catch (RuntimeException ex) {
 }
 if (camera == null) {
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 Log.w(TAG, "Sleep was interrupted.", ie);
 break;
 }
 }
 } while ((camera == null) && (count++ < 30));

Android application installer

Note: Available only for TomTom PRO 827x devices and not for PRO 8475 and PRO 8375.

36

App installer was developed to allow a quick installation of Android applications without
using the Software Update mechanism. It is not intended for final configuration of the de-
vice.

Note: All apps installed by the Android application installer will be removed if a user does
Personal Data Reset or a factory reset.

To install an android app on the device follow the next steps:

1. Put an Android app .apk file to the root folder of a micro SD card.

2. Insert the micro SD card in the PRO 8 Driver Terminal.

A dialog will appear on the screen, prompting to install one or more Android Applica-
tions from the SD card.

3. Click Install and the standard Android installation dialog will appear.

4. Follow the steps in the dialog to install the application(s).

Important! If Unknown sources is disabled in Security settings, the user will not be
prompted for installation.

Privacy disclaimers

Note: Available only for TomTom PRO 827x devices and not for PRO 8475 and PRO 8375.

If your application records or collects privacy sensitive information, you should inform the
user of this. To keep this clear to the user, we've provided a mechanism to show all these
disclaimers in one location: Settings > About your device > Legal information > Your in-
formation. You'll see all apps listed there and tapping them will show you their privacy in-
formation.

To list the privacy disclaimer of your application there, you need to add a meta-data ele-
ment called privacy_disclaimer to the application element of the application's Android-
Manifest.xml, defining a reference to a string resource via the android:resource field.
For example:

AndroidManifest.xml

 <application android:name="CustomApp"
 android:label="@string/application_name"
 android:icon="@mipmap/ic_launcher_custom_app" >

 <meta-data android:name="privacy_disclaimer"
 android:resource="@string/privacy_disclaimer"/>
 ...
 </application>

strings.xml

 ...
 <string name="privacy_disclaimer">General\nThis is a stylized
 <i>privacy disclaimer</i>.</string>
 ...

Wake on SMS

Note: Available only for TomTom PRO 827x devices and not for PRO 8475 and PRO 8375.

37

PRO 8 Driver Terminal can be woken up from sleep by sending an SMS to it. The screen is
not turned on by default, but an intent tomtom.intent.action.MODEM_WAKEUP is broad-
casted by the system. Upon receiving the intent, applications can decide whether to
turn on the display or to do some work and sleep again. The intent tomtom.intent.ac-
tion.MODEM_WAKEUP is only sent to the current user to prevent multiple instances of the
same application from retrieving the intent.

38

Customise

39

System Bar

The Navigation Bar allows you to add quick launch buttons to make switching between (or
launching) applications easier. To customise the bar go to the settings screen and click the
System Bar. You can add up to two quick launch buttons to the system bar.

Select Assign app and a list of the applications available on the system will appear:

Select the desired app and it will appear in the system bar. To delete previous quick launch
items, long press the button you used to assign the app in the System Bar Settings screen.

40

Home screen

About the Home screen

End users generally interact with the PRO 8 Driver Terminal in three ways:

1. Via the home screen (sometimes called the launcher)

In this mode of operation users can follow the navigation via the navigation widget,
clicking on it to go into full screen navigation mode. Users can interact with third party
widgets and applications installed onto the home screen.

2. Full screen Navigation

In this mode the user can interact with the full screen navigation application. It is not
possible to place widgets or application onto this fullscreen view.

3. A 3rd party or pre-installed application

In this mode of use an application has been launched and is displayed full screen for the
user to interact with. Pushing home will return the user to the home screen.

Driver Terminal

The default PRO 8 Driver Terminal home screen consists of eight user-definable tiles, laid
out in two rows by four columns. This configuration provides an open environment for you
to develop applications and configure the PRO 8 Driver Terminal for your end users.

The default configuration begins with a home screen containing a 3/4 screen navigation
widget and two tiles on the right side of the screen. Page two of the home screen contains
shortcuts to more apps and the All Apps browser.

41

Customising the home screen

It is possible to define multiple pages containing tiles, although in practice 2 or 3 pages
should suffice. On startup page 1 is shown - the user can then swipe between the pages.
Tiles are identified by a number in the following format: {page}.{row}{column}

So for page 1, tile numbers 1.11 to 1.24 are available. In this example, only one home screen
page will be displayed.

Create multiple pages

To define a second page, just change the '1' into a '2' for two pages or a '4' to define four
pages.

Creating blank pages

To create blank pages, define at least 3 pages and only put items on pages 1 and 3.

Configuring the tiles

Tiles can be populated with short cuts to applications or interactive widgets. Short cuts are
buttons with an icon and title text, when the user clicks on them, they will launch a certain
application full screen. Widgets are interactive views which can span multiple tiles, they
can display dynamically updated or animated information, users can sometimes interact

42

with them or launch fullscreen applications by clicking on them. Widgets on a PRO 8 Driver
Terminal are standard Android widgets.

The PRO 8 Driver Terminal home screen can be configured to show a navigation widget
on one of it's pages, spanning multiple tiles. You can also configure a tile to display an All
apps drawer which when clicked on will display tiles for each application currently installed
on the PRO 8 Driver Terminal.

Below is an example layout of a home screen page.

Screen orientation

If screen rotation is enabled on a device with a custom tile layout it is important to consid-
er this when adding home screen layouts so that layouts for both orientations are covered,
if desired.

In the event that no valid integrator configurations are present to support screen rotation
then the current screen orientation will be kept and an error message will be shown until
the user rotates the display back to the previous orientation.

Note that for a legacy 4x2 layout (in widgets.json) rotation will not be possible - landscape
will be enforced.

Using a legacy configuration (widgets.json)

Some older setups (17.1 and earlier) may use tile layouts in a file called widgets.json, lo-
cated in the /sdcard/ directory. If this is already present it will be used as a fall back in
the event that no valid configurations are found in the /sdcard/homescreen/ directory. In
case valid configurations are present in both locations the ones in /sdcard/homescreen/
will take precedent.

Section types

The widgets.json file is split into sections, each section defining the location of items relat-
ing to that section. You can define items for the following sections:

• navigation

• widget

• application

• video

• app-browser

navigation

This (simple) section is used to define where the navigation widget will be displayed and
the dimensions of the widget. This is an optional section, you can choose not to have a

43

navigation widget on the home screen - in this case access to navigation should be provid-
ed by adding an application short cut (to the navigation apk) on one of your home screen
pages, alternatively the application shortcut will always be available in the application
browser.

Requirements:

• Only one instance of navigation is allowed

• Minimum height and width are 2 x 2 tiles

• Maximum width is 4 tiles, maximum height 2 tiles

Explanation of the fields:

• ‘startcell’ [mandatory] is to define the start position of navigation. Value has to be low-
er than endcell. e.g. startcell is 1.11 and endcell is 1.12

• ‘endcell’ [mandatory] is to define the end position of navigation

widget

This section explains how to add standard Android widgets to your home screen. Widgets
can encompass more than one tile.

Widgets will only appear on the home screen if they are installed and configured correctly.
If your widget is not appearing in the home screen then you should check the error logs for
more details.

To see which widgets are installed on your device, please read Exporting a package list be-
low in this document.

Requirements:

• Widgets are optional components of the home screen

• Widgets should at least be the minimum size allowed

• A widget can span over more than one tile but height and width should limit it to one
page

Explanation of the fields:

• ‘package_name’ [mandatory]. Read below Exporting a package list

• ‘class_name’ [mandatory]. Read below Exporting a package list

• ‘startcell’ [mandatory] is to define the start position of a widget. Value has to be lower
than ‘endcell’, unless the widget is 1 X 1 size.; e.g. startcell is 1.11 and endcell is 1.12

• ‘endcell’ [mandatory] is to define the end position of a widget. Value has to be the
same or higher than ‘startcell’ e.g. startcell is 1.11 and endcell is 1.12 or higher

• ‘background_color’ [optional] is to define the background color of an application tile.
It uses the Android constant values e.g. 0xffffffff

"widget":
[
 {
 "package_name: "",
 "class_name": "",
 "startcell": "",
 "endcell": "",
 "background_color": ""
 }
]

44

application

In the application section you can create short cuts to Apps installed on your device. To
see which Apps are installed and more importantly to get the package and class name in-
formation, read Exporting a package list below.

Requirements:

• Apps are optional components of the home screen

• Apps cannot span, they are fixed to one tile

To define apps in the widgets.json file there are mandatory and optional fields:

• ‘startcell’ [mandatory] is to define the start position of an instance

• ‘package_name’ [mandatory]. Read below Exporting a package list

• ‘class_name’ [mandatory]. Read below Exporting a package list

• ‘background_color’ [optional] is to define the background colour of an application tile.
It uses the Android constant values e.g. 0xffffffff

The background colour can also be transparent: value 0x00000000. Syntax: ‘back-
ground_color’: ‘0xffcccccc’

• ‘text_color’ [optional] is to define the text color of an application tile. It uses the An-
droid constant values e.g. 0xff000000. Syntax: ‘text_color’: ‘0xffcccccc’

• ‘icon’ [optional] is to define a user icon instead of the default Android icon. Supported
filetype is .png

• ‘round_corners’ [optional] is to define (the amount of) rounded corners on the back-
ground tile. Values range from 0 (no roundness) to 255 (Max roundness) - default is 0

• ‘enable’ [optional] takes an enable slot identifier (0-255), multiple items can use the
same slot, slots can be enabled or disabled via intents, default is that slot 0 is disabled
and slots 1-255 are enabled. Use this functionality to disable (sets of) icons runtime (for
example - disabling items when driving)

There are 255 slots available. Each slot can be either enabled or disabled. Application
shortcuts which you do not allocate a slot to (with ‘enable’) will always be enabled and
cannot be disabled, ever. Slots are setup automatically at bootup, slot 0 is disabled, all oth-
er slots enabled.

"application":
[
 {
 "name": "app 1",
 "package_name": "",
 "class_name": "",
 "startcell": "",
 "background_color": "",
 "text_color": "",
 "icon": "user_icon.png"
 }
]

video

This section is used to define where the video widget will be displayed and the dimensions
of the widget. This is an optional section, you can choose not to have a video widget on
the home screen. Unlike the Video application which is always fullscreen, you can specifiy
the video widget dimensions on the home screen. When the device is connected to a video
feed, the streaming video should appear in the video widget area. Clicking on the video
widget will start a fullscreen Video application. The fullscreen Video application is also trig-
gered when it detects a video feed. You can stop the autostart of the fullscreen Video ap-
plication by adding a file rear_view_camera_no_autostart in the /mnt/sdcard/ directo-
ry of your device.

45

Requirements:

• Only one instance of video is allowed

• No size restrictions, however since it retains its aspect ratio its better to have it in 1x1 or
2x2 tiles

• Maximum width is 4 tiles, maximum height 2 tiles

• To prevent VideoApplication from autostart, add a blank file named rear_view_camer-
a_no_autostart in the /mnt/sdcard/ directory of your device

Explanation of the fields:

• ‘startcell’ [mandatory] is to define the start position of video. Value has to be lower
than ‘endcell’. e.g. startcell is 1.11 and endcell is 1.12

• ‘endcell’ [mandatory] is to define the end position of video

app-browser

In the application section of the widgets.json you can enable apps installed as on your de-
vice. To see which apps are installed, read Exporting a package list.

Requirements:

• Apps are optional components of the home screen

• Apps cannot span, they are fixed to one tile

To define apps in the widgets.json file there are mandatory and optional fields:

• ‘startcell’ [mandatory] is to define the start position of an instance

• "package_name" [mandatory]. Read below Exporting a package list

• "class_name" [mandatory]. Read below Exporting a package list

• "background_color" [optional] is to define the background colour of an application tile.
It uses the Android constant values e.g. 0xffffffff

The background colour can also be transparent: value 0x00000000. Syntax: ‘back-
ground_color’: ‘0xffcccccc’

• ‘text_color’ [optional] is to define the text colour of an application tile. It uses the An-
droid constant values e.g. 0xff000000. Syntax: ‘text_color’: ‘0xffcccccc’

• ‘icon’ [optional] is to define a user icon instead of the default Android icon. Supported
filetype is .png

• ‘round_corners’ [optional] is to define (the amount of) rounded corners on the back-
ground tile. Values range from 0 (no roundness) to 255 (Max roundness) - default is 0

• ‘enable’ [optional] takes an enable slot identifier (0-255), multiple items can use the
same slot, slots can be enabled or disabled via intents, default is that slot 0 is disabled
and slots 1-255 are enabled. Use this functionality to disable (sets of) icons runtime (for
example - disabling items when driving)

"application":
[
 {
 "name": "app 1",
 "package_name": "",
 "class_name": "",
 "startcell": "",
 "background_color": "",
 "text_color": "",
 "icon": "user_icon.png"
 }
]

46

Updating application icons

When you want to update the icon of an app, add a folder in the same directory where
widgets.json is located. The code should look like this:

{
 "name": "Earth",
 "package_name": "com.google.earth",
 "class_name": ""com.google.earth.EarthActivity,
 "startcell": "1.24",
 "background_color": "0xffcccccc",
 "icon": "/folder/icon.png"
}

Exporting a package list

To find out what packages are installed on your device you can use the app PackageLister.
After executing this app two buttons are available: Generate homescreen-list and Gener-
ate package-list file.

A file will be exported to /sdcard/packagelister/homescreen-list. This file contains
all installed widgets and apps on that specific Android device. You can use these to define
the home screen.

The PackageLister is a developer tool and can be downloaded from the downloads sec-
tion.

Example output of PackageLister:

{
"widget":
 [
 { "package_name": "com.android.contacts", "class_name": "com.an-
droid.contacts.socialwidget.SocialWidgetProvider" },
 { "package_name": "com.google.android.apps.currents", "class_name":
 "com.google.apps.dots.android.app.appwidget.PostListAppWidgetProvider" },
 { "package_name": "com.google.android.deskclock", "class_name":
 "com.android.AnalogAppWidgetProvider" }

],

"application":
 [
 { "package_name": "com.android.calculator2", "class_name": "com.an-
droid.calculator2.Calculator" },
 { "package_name": "com.android.contacts", "class_name": "com.an-
droid.contacts.activities.PeopleActivity" },
 { "package_name": "com.google.android.deskclock", "class_name":
 "com.android.deskclock.DeskClock" }

],
...

Example 1 home screen layout JSON

This is an example of the code:

{
 "navigation":
 [

47

 {
 "startcell": "1.11",
 "endcell": "1.22"
 }
],
 "widget":
 [
 {
 "package_name": "com.google.android.gm",
 "class_name": "com.google.android.gm.widget.GmailWidget-
Provider",
 "startcell": "1.13",
 "endcell": "1.23",
 "background_color": "0xfffccccc"
 }
],
 "application":
 [
 {
 "name": "Calculator",
 "package_name": "com.android.calculator2",
 "class_name": "com.android.calculator2.Calculator",
 "startcell": "1.14",
 "background_color": "0xffccccc",
 "icon": "icon.png"
 },
 {
 "name": "Earth",
 "package_name": "com.google.earth",
 "class_name": ""com.google.earth.EarthActivity,
 "startcell": "1.24",
 "background_color": "0xffcccccc",
 "icon": "icon.png"
 }
]
}

The result will look as follows – Application view of one home screen page

Example 2 home screen layout JSON

This is an example of the JSON code.

{
 "navigation":
 [
 {
 "startcell": "1.11",

48

 "endcell": "1.23"
 }
],
 "application":
 [
 {
 "class_name": "com.android.settings.Settings",
 "package_name": "com.android.settings",
 "startcell": "1.14",
 "endcell": "1.14",
 "background_color": "0xcc000000",
 "text_color": "0xffffffff"
 }
],
 "widget":
 [
 {
 "package_name": "com.tomtom.pnd.musicplayer",
 "class_name": "com.tomtom.pnd.widget.MusicWidgetProvider",
 "startcell": "2.11",
 "endcell": "2.22"
 }
],
 "app-browser":
 [
 {
 "startcell": "1.24",
 "endcell": "1.24",
 "background_color": "0xcc000000",
 "text_color": "0xffffffff"
 }
],
 "video":
 [
 {
 "startcell": "2.23",
 "endcell": "2.23",
 "background_color": "0xcc000000"
 }
]
}

Application view. Note the page indicator:

Application view of home screen page 1

Application view of home screen page 2

49

Adding multiple widgets and apps

 "widget":
 [
 {
 "package_name": "",
 "class_name": "",
 "startcell": "",
 "endcell": "",
 "background_color": ""
 }, -- note the comma when adding an extra application
 {
 "package_name": "",
 "class_name": "",
 "startcell": "",
 "endcell": "",
 "background_color": ""
 } -- no comma after the last package
],
 "application":
 [
 {
 "package_name": "",
 "class_name": "",
 "startcell": "",
 "text_color": ""
 "background_color": ""
 }, -- note the comma when adding an extra application
 {
 "package_name": "",
 "class_name": "",
 "startcell": "",
 "text_color": "",
 "background_color": ""
 } -- no comma after the last package
],

Enabling and disabling shortcuts dynamically

Application shortcuts which have been allocated an ‘enable slot identifier’ can be enabled
or disabled by sending intents to the home screen process.

Testing this functionality can be achieved by sending intents from the command line:

adb shell am start -n com.tomtom.navpad.navapp/com.tomtom.navpad.navap-
p.NavPadNavAppActivity --es reason "enable" --ei index "3" --ez enable

50

 "false"

Programmatically an intent needs to be sent to the home screen with the following extra
data.

(string) "reason", "enable"
(int) "index", enable-slot-identifier
(boolean) "enable", TRUE|FALSE

This functionality can be used for example for monitoring the vehicle speed in a back-
ground service and sending intents to enable or disable icons in the home screen when a
certain speed is reached. Or preventing access to applications if the user has not logged in
to a customers backend server.

Configuring the home screen with drag and drop

In the above sections, we have seen how the home screen can be configured by manually
editing the widgets.json file. However, manually editing the widgets.json can introduce er-
rors. In case of major errors in the widgets.json file, the device will revert to default layout
of home screen.

To avoid this, you can make your home screen configurable. A configurable home screen
enables the user to make changes to the home screen layout, by dragging and dropping
rather than editing the file manually. Drag and drop is enabled in the default layout. If you
do not want the default layout and have your own widgets.json file, then it can be made
configurable by adding the following line to the widgets.json:

 "configurable": "true"

Below is an example layout for a configurable home screen.

{
 "configurable": "true",
 "navigation":
 [
 {
 "startcell": "1.11",
 "endcell": "1.23"
 }
],
 "application":
 [
 {
 "class_name": "com.android.settings.Settings",
 "package_name": "com.android.settings",
 "startcell": "1.14",
 "endcell": "1.14",
 "background_color": "0xcc000000",
 "text_color": "0xffffffff"
 }
],
 "widget":
 [
 {
 "package_name": "com.tomtom.pnd.musicplayer",
 "class_name": "com.tomtom.pnd.widget.MusicWidgetProvider",
 "startcell": "2.11",
 "endcell": "2.22"
 }
]
}

51

A configurable home screen allows the user to add, move and delete widgets and appli-
cations on the homescreen. Unlike applications which occupy only one tile on the home
screen, a widget can be resized on a configurable home screen. The user makes a change
to home screen layout by dragging and dropping, a new layout is written to a file called
the x-user.json, where x corresponds to the current tile layout (e.g. 5x3-user.json). This is a
per user setting and is stored in the /sdcard/homescreen/user directory.

If you want to allow your users to add their own apps and widgets from a custom layout
remember to include All apps and Add widget to their home screen.

52

Settings

In order to roll out Android settings to devices you must first export these settings from
one device and then put that backup in a configuration for other devices.

Note: The settings that are rolled out to users will overwrite all their current settings.

Exporting Settings

In order to configure all devices in a fleet or set up an SD card which will contain settings
to be cloned onto multiple devices, you must first set up your own device via the settings
menu to the correct configuration. When you have set the correct settings you can export
the settings to a file using the following command in adb:

adb backup -system android com.android.providers.settings

The following pop-up will be shown:

Click Back up my data and the settings will be exported to a file called backup.ab on your
computer.

Rolling out settings to devices

To learn how to roll out settings to your PRO 8 Driver Terminal refer to the FAQ How do I
create a settings zip file in our Support portal on www.webfleet.com/support.

53

https://portals.webfleet.com/s/article/Mobile-device-manager-MDM-Device-manager-FAQs
https://portals.webfleet.com/s/article/Mobile-device-manager-MDM-Device-manager-FAQs
https://www.webfleet.com/support/

External Camera Application

Settings Customisation

The External Camera application settings can be pre-set and distributed to the end users.
Use the user interface of the External Camera application to change to the desired set-
tings. These changes to the settings are automatically exported to the following file: /sd-
card/tomtom/camera_settings_export.json.

Once the settings are customised this file should be renamed to camera_settings_im-
port.json before distributing it to the end user devices as /sdcard/tomtom/camera_set-
tings_import.json. This settings file is read every time the application starts.

The values of the settings file will only be imported into the end users application if:

• The file /sdcard/tomtom/camera_settings_export.json does not exist on the end-
user device. (None of the default - or previously imported - settings have yet been
changed using the user interface), and

• The reset attribute of the camera_settings_import.json file equals true.

Settings Attributes

The structure of the settings file is as follows, using the default values as an example:

{
 "reset": false,
 "configurable": true,
 "view_mode": "fit",
 "aspect_ratio": "auto",
 "full_screen": false,
 "mirrored": false
 "guidelines": {
 "enable": false,
 "left_top_x": 38,
 "left_bottom_x": 30,
 "right_top_x": 62,
 "right_bottom_x": 70,
 "top_y": 41,
 "bottom_y": 98
 }
}

reset Whether or not these settings should overwrite the current settings of
the application. The accepted value is a boolean true or false.

configurable Whether or not the user is allowed to modify settings of the application.
The user interface will show/hide configuration buttons based on this
setting. The accepted value is a boolean true or false.

54

view_mode Is the image position in the settings. Accepted value is a string fit, fill
or stretch.

Important! The value is applied depending on the device’s orientation
(portrait or landscape)!

fit Fits the image to the screen. Aspect ratio of the image is
maintained and the whole image is always displayed. If
you have a 4:3 image then you will have bars on the sides
(landscape) or top and bottom (portrait).

fill Aspect ratio of the image is maintained, but the whole
screen will be used. If you have a 4:3 image then the top/
bottom of the image will be cut (landscape) and right/left
of the image will be cut (portrait).

stretch Will stretch or squeeze the image to fit the screen, aspect
ratio is not maintained. If you have a 4:3 image the image
will be stretch left to right (in landscape) or top to bottom
(in portrait).

aspect_ratio Aspect ratio of the video preview. Accepted value is a string six-
teen_nine, four_three or auto.

full_screen Whether or not the video preview should be shown in full screen. The
accepted value is a boolean true or false.

mirrored Whether or not the video preview should be mirrored. The accepted val-
ue is a boolean true or false.

guidelines The relative position of Guideline points as a percentage of the screen
width (x) or height (y).

enable Whether or not the guidelines view should be enabled.
The accepted value is a boolean true or false.

left_top_x Distance of the left top point, from left side of screen as
percentage of the total width.

left_bot-
tom_x

Distance of the left bottom point, from left side of screen
as percentage of the total width.

right_top_x Distance of the right top point, from left side of screen as
percentage of the total width.

right_bot-
tom_x

Distance of the right bottom point, from left side of
screen as percentage of the total width.

top_y Distance of the top line, from top side of screen as per-
centage of the total height.

bottom_y Distance of the bottom line, from top side of screen as
percentage of the total height.

55

All the guideline points are validated as follows:

• All negative values are converted to 0.

• All values above 100 are converted to 100.

• If right_top_x is less than left_top_x, then the values will be
switched.

• If right_bottom_x is less than left_bottom_x, then the values will
be switched.

• If bottom_y is less than top_y, then the values will be switched.

• The minimum distance between two points horizontally is 10% of
screen width and will be enforced, if not set correctly, by adjusting
the point at the right.

• The minimum distance between two points vertically is 10% of screen
height and will be enforced, if not set correctly, by adjusting the
point at the bottom.

56

Start-up experience

Note: Available only for TomTom PRO 827x devices and not for PRO 8475 and PRO 8375.

Custom boot animation

Your PRO 8 Driver Terminal device will display the Webfleet Solutions screen after push-
ing the power button to start up the device. This actions is not customisable. After a few
seconds and during start-up of the Android OS, it is possible to display your own android
boot animation.

To create your own boot animation you can follow the information from this tutorial on an-
droid boot animations.

The format of the boot animation should be ZIP and the file should be called bootanima-
tion.zip.

The file should be placed in the following directory: /sdcard/bootanim/

Please note, the bootanimation.zip creation requires some special attention:

• The ZIP should not be compressed! Files should be using the STORE method, which
means they get added to the ZIP verbatim. Android does not want to be bothered with
decompression at boot time.

• If you use PNG's, make sure they are not interlaced and have no transparency. You can
also use JPEG's but usually animation requires the more crisp loss-less compression of
PNG over the lossy photo data compression of JPEG to prevent artifacts.

• The animation will always be centered in both dimensions. Therefore, you can keep the
images small and achieve a higher frame rate without delaying the actual booting too
much. For this reason and to be compatible with both landscape and portrait devices,
the suggestion is to make them square.

• To ensure this is rolled out to all devices correctly using the software update be sure to
store the boot animation in a directory call bootanim and then zip the whole directory.

57

Copyright notices

© 2025 Bridgestone Mobility Solutions B.V. All rights reserved. Webfleet is a registered
trademark of Bridgestone Mobility Solutions B.V. or one of its Affiliates.

58

	Welcome
	Develop
	PRO 8 NavApp SDK
	PRO 8 is Android
	Downloading the NavApp SDK
	NavApp SDK javadoc documentation
	Installing the SDK
	Initialising the SDK
	Using the API
	Importing and exporting routes
	Importing routes into Navigation

	Exporting routes and saving routes to the device
	Recording new routes
	Listening for speed limit changes

	Map Library SDK
	Downloading Map Library SDK
	Map Library SDK javadoc documentation
	Accessing the API functionality
	Enabling and disabling zooming interaction
	Zooming the map programmatically
	Getting the map scale
	Setting the map scale
	Enabling and disabling panning interaction
	Enabling and disabling autocenter
	Change map orientation
	Panning and setting the map center
	Using map markers
	Using map layers
	Using Sensor Location

	Installing the Map Library SDK
	Defining the view in the layout XML
	Initialising and interfacing with the SDK

	Development tools
	Taking Screenshots

	System intents
	Intents listened for
	Home screen
	Open the home screen on the currently active page
	Go to home and scroll to page number X
	Go to home and scroll to the page holding the navigation widget
	Open up the navigation page on home screen, or full screen navigation whichever was last in use
	Disable or enable items in group with an index number

	Navigation application
	Open the full screen Navigation
	Import a single route into the Navigation application
	Import a list of routes into the Navigation application
	Show the map at the given latitude and longitude
	Plan a route to the given latitude and longitude

	Software updater
	Remove APKs which are not installed by Software update application

	External camera application
	Stop the external camera application

	System bar
	Set Quick Launch button X with intent ‘intent_uri’
	Clear Quick Launch button X

	Intents broadcast
	Receive a single route
	Receive multiple routes
	Navigation app starts after a reboot
	Update has started
	System was successfully updated
	Software update application encountered an error
	Device needs to suspend/shutdown
	State of the ignition signal has changed
	Microphone connectivity state

	Suspend Shutdown hooks
	Power off states and reasons

	Additional features
	Connecting to an external camera
	Android application installer
	Privacy disclaimers
	Wake on SMS

	Customise
	System Bar
	Home screen
	About the Home screen
	Driver Terminal
	Customising the home screen
	Create multiple pages
	Creating blank pages
	Configuring the tiles
	Screen orientation
	Using a legacy configuration (widgets.json)
	Section types
	navigation
	widget
	application
	video
	app-browser

	Updating application icons
	Exporting a package list
	Example 1 home screen layout JSON
	Example 2 home screen layout JSON
	Adding multiple widgets and apps
	Enabling and disabling shortcuts dynamically
	Configuring the home screen with drag and drop

	Settings
	Exporting Settings
	Rolling out settings to devices

	External Camera Application
	Settings Customisation
	Settings Attributes

	Start-up experience

	Copyright notices

