W webfleet

Accessing Webfleet OAuth
APIs

Reference Guide

ZRIDGESTONE

Solutions for your journey

Contents

Getting started.... ..o e e 3
191 o Yo 11T T Y o T 4
BIC=] 0 0¥ Lo Lo« Y SRS 5
Webfleet Authorization Server endpoints... . 7

Working with Webfleet Authorization Server......cirrcrreccircrre s 8
Obtaining an access and refresh tOKEN.......cccc i ——— 9

Triggering OAuth 2.0 authorisation COde flOW.....ccciii e 9
Obtaining an authOriSAtION COU.. et 10
Exchanging authorization code for access and refresh tokens.......ccoccvevecccceccnsnenn, 10

Why is it necessary to Use OffliNe tOKENS? ... e N
Refreshing acCess tOKENS.. ... e n e s 13
ReVOKING refreSh tOKENS.ccc i s e e e e e e e s e e s e s e e e e annnnnn 15
=Y (= =] 5 L= S 16

[LR VA3 oY o T 2113 o] 77 17

Getting started

Introduction

Webfleet APIs are secured using OAuth2 and partially inspired by Openld Connect Core
1.0. Samples showing how to integrate can be found in the official Webfleet Github ac-
count.

Before starting to integrate with Webfleet APIs, a pair of OAuth 2.0 client credentials
are required. These credentials identify your application as a client (OAuth 2.0. Ask the
Webfleet customer support about the right procedure to register your application as a
client to obtain your credentials.

Client credentials cannot be used to log in to Webfleet. These identify a client application
and do not refer to a customer’s credentials.

Once provided with a pair of client credentials you can request through Webfleet Autho-
rization Server authorisation and token endpoints a claim granting you access to Webfleet
APIs.

Nevertheless, customers will need to grant access to user data following OAuth 2.0 Autho-
rization code grant flow. The diagram below shows Authorization code flow steps.

Client Webfleet Solutions

I
i Request authorization code :

Resource Owner
]

Login & c-:rnselt

» Authorization code

Exchange code for token .

» Mew access token & refresh token

Request user data

}_L

|| * User data

Resource OWner | qjient Webfleet Solutions

At completion of this flow an access token and refresh tokens are granted to the client
providing access to customer's data he gave consent for on his behalf. Use Bearer token
(REC 6750) in an authorisation header (RFC 6750 section 2.1) to access Webfleet APIs.

Example using Bearer token authorization header (RFC 6750 section 2.1):

GET /api HTTP/1.1
Host: api.webfleet.com
Authorization: Bearer eyJhbGciOiJI...

https://tools.ietf.org/html/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://github.com/Webfleet-Solutions/oauth-java-example
https://github.com/Webfleet-Solutions/oauth-java-example
https://tools.ietf.org/html/rfc6749#section-2
https://tools.ietf.org/html/rfc6749#section-2
https://tools.ietf.org/html/rfc6749#section-1.3.1
https://tools.ietf.org/html/rfc6749#section-1.3.1
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750#section-2.1
https://tools.ietf.org/html/rfc6750#section-2.1

Terminology

Access token
A token used to access protected resources.
Authorization code

An intermediary token generated when a user authorises a client to access protected re-
sources on their behalf. The client receives this token and exchanges it for an access token.

Authorization server

A server which issues access tokens after successfully authenticating a client and resource
owner, and authorising the request.

Client

An application which accesses protected resources on behalf of the resource owner (such
as a user). The client could be hosted on a server, desktop, mobile or other device. Also
known as Relying Party in Openld Connect Core 1.0.

Grant
A Grant is a method of acquiring an access token.
JWT

A JSON Web Token is a method for representing claims securely between two parties as
defined in RFC 7519.

Offline session

It is like a standard session but is controlled by an offline token. It can be maintained indef-
initely if the offline token has not expired and will keep performing actions even if the user
is not online.

Offline token

A special kind of refresh token that allows the application to grant new access tokens even
after the user is logged out and the active session is expired. This action is useful if your
application needs to perform offline actions on behalf of the user such as data backups.

Refresh token

A token requested as part of the process of obtaining an access token. When the access
token expires the application can request a new one using this refresh token and the client
id, so the user retains access to the resources without granting permissions again.

Resource owner

The user (typically a Webfleet customer) who authorises an application to access their ac-
count. The access of the application to the account of the user is limited to the scope of
the authorisation granted (e.g. read or write access).

Resource server

A server which sits in front of protected resources (for example vehicle data, drivers) and
is capable of accepting and responding to protected resource requests using access to-
kens.

Scope

https://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/rfc7519

A scope is a mechanism to limit the access of an application to the account of a user (e.g.
read profile information).

Webfleet Authorization Server
endpoints

Find below Webfleet Authorization server endpoints used to authenticate and revoke ac-
cess in Webfleet.

Authorization endpoint https://login.webfleet.com/auth/realms/webfleet/
protocol/openid-connect/auth

Token endpoint https:/login.webfleet.com/auth/realms/webfleet/
protocol/openid-connect/token

Token revocation endpoint https://login.webfleet.com/auth/realms/webfleet/
protocol/openid-connect/revoke

JWK keys endpoint https:/login.webfleet.com/auth/realms/webfleet/
protocol/openid-connect/certs

Working with Webfleet
Authorization Server

Obtaining an access and refresh token

Webfleet APIls use OAuth 2.0. Clients must use the OAuth 2.0 Authorization code grant
flow to obtain an access token which is a self contained signed structure following JWT
specification. This flow ensures resource owners privacy and explicitly represents a mutual
trust agreemet between all parties; resource owner, client and Webfleet.

Below are steps to obtain an access token, steps below follow standard specification and
are documented for better understanding of the process. It is recommended to use an
available OAuth library, a list of available client libraries for different languages can be
found in https://oauth.net/code/.

Triggering OAuth 2.0 authorisation code flow

The authentication flow is triggered by redirecting resource owner's user agent to
Webfleet Auth authorization endpoint with the following parameters:

Parameter Description

redirect_uri This is the callback URI which will receive the authorisation
code from the user's authorisation process.

This parameter must be provided during registration process.

response_type OAuth 2.0 grant flow to use. Use code as parameter value to
trigger OAuth 2.0 Authorization code grant flow.

client_id OAuth client credentials username, provided during the part-
nership registration process.

state A random state value that is used to correlate/validate the re-
quest in the callback later.

This parameter is optional.

scope List of OAuth 2.0 scopes.

This parameter is optional. By default, clients will not require
this parameter, default scopes are always assigned to the
client, regardless of the optional scopes. Additional scopes
might be required to access other APIs or apply new features.
Consult related APl documentation to learn more about its re-
quired scopes. The use of the scope “offline_access” is needed
to obtain offline tokens.

Example using the authorisation endpoint to trigger OAuth 2.0 Authorization code grant
flow

GET
http://auth/realms/webfleet/protocol/openid-connect/auth?scope=<offline ac-
cess>&redirect uri=<your redirect uri>&client id=<your client id>&re-
sponse_ type=code&state={random} HTTP/1.1

Host: https://login.webfleet.com

https://oauth.net/code/
https://tools.ietf.org/html/rfc6749#section-1.3.1
https://tools.ietf.org/html/rfc6749#section-1.3.1
https://tools.ietf.org/html/rfc6749#section-1.3.1

This request will redirect the user agent to a login page on the Webfleet servers in which
resource owner credentials must be entered. This avoids entering credentials on 3rd party
software keeping them from potential leaks.

Obtaining an authorisation code

At the end of this process resource owner's browser is redirected to the uri provided in
redirect uri parameter with the authorisation code. This authorisation code can then be
used to request an access token from the token endpoint.

In the previous example the user agent will have been redirected to:

https://integrator.example.com/cb?code=auth code&state=some value

At this point user interaction is no longer necessary and it depends on application require-
ments whether the next steps need to happen in the same flow as the user’s interaction or
can be executed in the background.

The authorisation code received can be exchanged for an access token only once using the
token endpoint. After its usage the authorisation code is invalidated and cannot be reused.

Exchanging authorization code for access and refresh tokens

To request an access token using an authorization code client credentials can provided in
a Basic Authorization header, base64 encoded (RFC 7235) or as parameters in the request
payload.

Authorization code and the redirect_uri parameter must be provided to enforce security,
validating it's the same as registered by the OAuth client. The token exchange request is
form encoded and requires the following parameters:

Parameter Description

grant_type OAuth 2.0 grant type.

Use authorization code as parameter value to follow OAuth
2.0 Authorization code grant flow.

code The authorisation code received in previous step.

redirect_uri The redirect URI associated to the OAuth client provided dur-
ing the partner registration process.

client_id OAuth client credentials username provided during registra-
tion process.

scope List of OAuth 2.0 scopes.

This parameter is optional. By default, clients will not require
this parameter, default scopes are always assigned to the
client, regardless of the optional scopes. Additional scopes
might be required to access other APIs or apply new features.
Consult related APl documentation to learn more about its re-
quired scopes. The use of the scope “offline_access” is needed
to obtain offline tokens.

client_secret OAuth client credentials password provided during registra-
tion process.

10

https://tools.ietf.org/html/rfc6749#section-1.3.1
https://tools.ietf.org/html/rfc6749#section-1.3.1

Example:

POST /auth/realms/webfleet/protocol/openid-connect/token HTTP/1.1
Host: https://login.webfleet.com

Content-type: application/x-www—-form-urlencoded

Accept: application/json

grant type=authorization code&client id=<YOUR CLIENT ID>&client secret=<Y-
OUR CLIENT SECRET>&code={code}&<scope>=offline accessé&redirect uri=<Y-
OUR REDIRECT URI>

If the previous request was succesful, it will return a JSON object containing a pair of JWT
(REC 7519) access and refresh tokens which can be used to access Webfleet APl on behalf
of the user which granted access.

It also contains information about the token as specified by JSON Web Token specification
(REC 7519) which is the underlying claim transport mechanism.

JSON object response example:

{
"access token": "eyJhbGciO...",
"token type": "bearer",
"refresh token": "eyJhbGciOiJ...",
"expires in": 3599,
"refresh expires in": 0,
"scope": "...",

}

Both access and refresh tokens have an expiration time, access tokens are short-lived while
refresh tokens are long-lived. The former are used to access APIs while the latter are on-

ly used to renew access tokens using this procedure. Usually only refresh token needs to
be persisted while access token may expire oftenly while requesting a protected resource.
This should be handled specifically to trigger an access token renewal procedure as de-
scribed below.

Typically access tokens will only persist during an execution session and refresh tokens will
be used to issue new ones for a later session, thus, it is only necessary to store refresh to-
kens.

Refresh tokens can be used to issue access tokens thus impersonating the access of the
userto the data - keep it mind while handling refresh tokens.

It is your responsibility to securely store refresh tokens using appropriate encryption and
security mechanisms. Any leak must be communicated and refresh tokens revoked as soon
as possible.

Alternatively client id and client secret parameters can be replaced with an authori-
sation header using Basic Authentication.

Why is it necessary to use offline tokens?

It is suggested adding “offline_access” scope in the process of obtaining access tokens in
order to get an offline token. It is an optional scope and will not be applied by default un-
less it is added directly in the request.

Offline access is a new feature implemented by our services that allows the application
with an offline token to get the access token and use the resources without the user hav-
ing to log in, for a long time or forever. In other words, users can grant access to the re-
sources without having to introduce the credentials or, even, being present. Storing and

handling of the offline token is done in the same way as with a standard refresh token.
11

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7235

This feature implies several improvements such as:

It will allow to perform "offline"” actions on behalf of the user even when the user is not
online. For example, a periodic backup of some data every night.

The offline token will never expire. However, it is subject to an idle timeout to renew its
validity. It can also be revoked by the user at any time.

Refreshing access tokens

You can obtain a new access token as specified in OAuth 2.0 Refresh token using the to-
ken endpoint in a similar process as with the authorisation code to obtain an access token,
OAuth client credentials are also required.

€]
Webfleet Solutions API

4. protected resource |3. Access token

€]
Webfleet Solutions

w2 Access foken 4 Authserver

] 1. Refresh access token

Client

Refreshing an access token requires the following parameters in a form encoded request.

Parameter Description

grant_type OAuth grant type flow. Use refresh token as parameter val-
ue.

refresh_token The refresh token to use to renew the access token which was
obtained during the initial flow authenticating the resource
owner user.

client_id OAuth client credentials username provided during registra-

tion process.

client_secret OAuth client credentials password provided during registra-
tion process.

POST /auth/realms/webfleet/protocol/openid-connect/token HTTP/1.1
Host: https://login.webfleet.com
Content-type: application/x-www-form-urlencoded

grant type=refresh token&client id=<YOUR CLIENT ID>&client secret=<Y-
OUR_CLIENT SECRET>&refresh token=eyJhbGciOidJ...

A successful request will return for example:

{
"access token": "eyJhbGciO...",
"token type": "bearer",
"refresh token": "eyJhbGciOiJ...",
"expires in": 3599,
"refresh expires in": 0,

1] 1]

"scope": oG,

https://tools.ietf.org/html/rfc6749#section-1.5

The refresh token value from the JSON object response must be stored replacing the
previously stored refresh token.

Alternatively client id and client secret parameters can be omitted and provided in
an authorisation header using Basic Authentication.

https://tools.ietf.org/html/rfc7235

Revoking refresh tokens

Revocation of refresh tokens is implemented following OAuth 2.0 Token revocation (RFC
7009). Given Webfleet Authorization Server uses JSON Web Token specification (RFC
7519) to issue signed self-contained tokens, only refresh tokens can be centrally revoked,
access tokens stay valid until they have expired and cannot be revoked.

OAuth clients may revoke any refresh token issued to them, thus not requiring customer'’s
consent to revoke access to a customer granted refresh token.

Revoking a refresh token requires the following parameters in a form encoded request.

Parameter Description

token Refresh token to revoke.
Only refresh tokens are allowed for revocation.

Example using Basic Authentication

POST /auth/realms/webfleet/protocol/openid-connect/revoke HTTP/1.1

Host: https://login.webfleet.com

Authorization: Basic PH1vdXJfY2xpZW50X21kPjo8eW91cl9jbGllbnRfc2VjcmVOPiA=
Content-type: application/x-www-form-urlencoded

token=eyJhbGciOidJ. ..

https://tools.ietf.org/html/rfc7009
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7235

References

Please refer to specifications below for further details on the underlying authentication and
authorization mechanisms.

OAuth 2.0 (RFC 6749)

OAuth 2.0 Bearer Token Usage (RFC 6750)

JSON Web Tokens (RFC 7519)

OAuth 2.0 Token revocation (RFC 7009)
Hypertext Transfer Protocol (HTTP/1.1): Authentication (RFC 7235)

Server Administration Guide - Offline access (keycloak.org)

16

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7009
https://tools.ietf.org/html/rfc7235
https://www.keycloak.org/

Revision history

© 2024 Bridgestone Mobility Solutions B.V. All rights reserved. Webfleet is a registered
trademark of Bridgestone Mobility Solutions B.V. or one of its Affiliates.

No part may be reproduced except as authorised by written permission. The copyright and
the foregoing restriction extend to reproduction in all media.

Revision history

Date Description Author
2020-05-12 Initial release. RH

2022-06-27 Updated content. TB/RH
2022-08-15 Added client_secret parameter to tables. TB/RH

2024-04-17 Update example responses. AC/TB

	Getting started
	Introduction
	Terminology
	Webfleet Authorization Server endpoints

	Working with Webfleet Authorization Server
	Obtaining an access and refresh token
	Triggering OAuth 2.0 authorisation code flow
	Obtaining an authorisation code
	Exchanging authorization code for access and refresh tokens
	Why is it necessary to use offline tokens?

	Refreshing access tokens
	Revoking refresh tokens
	References

	Revision history

